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Valence-Bond Crystal in a Pyrochlore Antiferromagnet with Orbital Degeneracy
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We discuss the ground state of a pyrochlore lattice of threefold orbitally degenerate S � 1=2 magnetic
ions. We derive an effective spin-orbital Hamiltonian and show that the orbital degrees of freedom can
modulate the spin exchange, removing the infinite spin-degeneracy characteristic of pyrochlore
structures. The resulting state is a collection of spin-singlet dimers, with a residual degeneracy due
to their relative orientation. This latter is lifted by a magnetoelastic interaction, induced in the spin-
singlet phase space, that forces a tetragonal distortion. Such a theory provides an explanation for the
helical spin-singlet pattern observed in the B spinel MgTi2O4.
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Geometrically frustrated antiferromagnets have
gained increasing interest in the past decade [1]. The
reason is that their ground states are highly degenerate
and can evolve in a variety of ways: they can remain
liquid down to the lowest temperatures [2], or lift their
degeneracy via the order-out-of-disorder mechanism [3]
or through a phase transition that lowers the local sym-
metry of the lattice [4,5]. In this Letter we want to point
out and discuss another scenario, one that can appear
when magnetic ions of frustrated lattices also possess
an orbital degeneracy. The physical behavior of such
systems may be drastically different from that of pure
spin models, as the occurrence of an orbital ordering can
modulate the spin exchange, thus lifting the geometrical
degeneracy of the underlying lattice. In the following we
focus on a system with threefold orbitally degenerate S �
1=2 magnetic ions in a corner-sharing tetrahedral (pyro-
chlore) lattice. This model is suitable to describe d1-type
transition-metal compounds, like the B spinel MgTi2O4.
Here the magnetically active Ti3� ions form a pyrochlore
lattice and are characterized by one single electron in the
threefold degenerate t2g manifold. MgTi2O4 undergoes a
metal-to-insulator transition on cooling below 260 K,
with an associated cubic-to-tetragonal lowering of the
symmetry [6]. At the transition the magnetic susceptibil-
ity continuously decreases and saturates, in the insulating
phase to a value which is anomalously small for spin-1=2
local moments: For this reason the insulating phase has
been interpreted as a spin singlet. Subsequent synchrotron
and neutron powder diffraction experiments have re-
vealed that the low-temperature crystal structure is
made of alternating short and long Ti-Ti bonds forming
a helix about the tetragonal c axis [7]. These findings have
suggested a removal of the pyrochlore degeneracy by a
one-dimensional (1D) helical dimerization of the spin
pattern, with spin singlets located on short bonds. This
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phase can be regarded as a valence-bond crystal (VBC)
since the long-range order of spin singlets (dimers) ex-
tends throughout the whole pyrochlore lattice.

Here we describe the microscopic theory behind the
stabilization of this VBC ground state. We argue that,
remarkably, such a novel phase can be realized on a
pyrochlore lattice because of orbital degeneracy, without
invoking any exotic interactions. The existence of an
orbitally driven VBC had been suggested for a cubic
lattice of d9 compounds [8]. For d2 compounds with
frustrated lattices, the orbital order is shown to induce a
spin-singlet ground state for triangular lattices [9], or a
spin ordered one for pyrochlore lattices [10]. Yet, the
peculiar case of d1 spinel compounds leads to new results:
the onset of an orbitally driven VBC state on the pyro-
chlore lattice.

Effective Hamiltonian.—We first derive a superex-
change spin-orbital Hamiltonian similar to the Kugel-
Khomskii model [11] for threefold orbitally degenerate
d1 ions on a pyrochlore lattice. We assume that the low-
temperature insulating phase of MgTi2O4 is of the Mott-
Hubbard type. We work in the cubic crystal class and look
for possible instabilities towards symmetry reductions.
Our parameters are the nearest-neighbor (NN) hopping
term t, the Coulomb on-site repulsions U1 (within the
same orbital) and U2 (among different orbitals), and the
Hund’s exchange, JH. For t2g wave functions the relation
U1 � U2 � 2JH holds due to rotational symmetry in real
space. The orbital occupancies of t2g orbitals, n� (�; �

x; y; z), are expressed in terms of the pseudospin ~� � 1,
with the correspondence: �z � �1 ! jyzi, �z � 0 !
jxyi, and �z � 1 ! jxzi. At first, we consider only the
leading part of the hopping term, due to the largest dd�
element, and discuss later the effects of smaller contribu-
tions (e.g., dd�). The dd� overlap in the � plane con-
nects only the corresponding orbitals of the same �
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FIG. 1. Orbital and bond arrangements on a tetrahedron
(a) case (A), (b) case (B), and (c) case (C).
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type. Thus, the total number of electrons in each orbital
state is a conserved quantity and the orbital part of the
effective Hamiltonian Heff is Ising-like:

Heff � �J1
X

hiji

� ~Si 	 ~Sj � 3=4
Oij � J2
X

hiji

� ~Si 	 ~Sj

� 1=4
Oij � J3
X

hiji

� ~Si 	 ~Sj � 1=4
 ~Oij; (1)

where the sum is restricted to the NN sites. Introducing
the projectors on the orbital states of site i, Pi;xz �
1
2 �iz�1� �iz�, Pi;xy � �1� �iz��1� �iz�, and Pi;yz �
� 1

2 �iz�1� �iz�, the orbital contributions along the bond
ij in the � plane is given by Oij � Pi;��1� Pj;�� �
Pj;��1� Pi;�� and ~Oij � Pi;�Pj;�. The first and sec-
ond terms in Heff describe the ferro-magnetic (FM) J1 �
t2=�U2 � JH� and the antiferro-magnetic (AFM) J2 �
t2=�U2 � JH� interactions, respectively, and are active
only when the two sites involved are occupied by different
orbitals. The last term is AFM, with J3 �

4
3 t

2�2=�U2 �

JH� � 1=�U2 � 4JH�
, and is nonzero only when the two
sites have the same orbital occupancy. At this point it is
useful to have an idea of the energy scales that play a role
in the Hamiltonian (1). We estimate t  t� ’ 0:32 eV,
JH ’ 0:64 eV, and U2 ’ 4:1 eV [12]. Thus � � JH=U2 ’
0:15 � 1 and, just in order to present the results in a more
transparent form, we expand the exchange energies
around � � 0. We get J1 ’ J�1� ��, J2 ’ J�1� ��, and
J3 ’ 4J�1� 2��, where J � t2=U2 ’ 25 meV represents
the overall energy scale. In the following we measure all
energies in units of J.

The main aspect ofHeff is that, due to dd� character of
the hopping terms, only some orbital configurations con-
tribute to the energy: every bond ij in the � plane has
zero energy gain unless at least one of the two sites i and j
has an occupied � orbital. The strength, as well as the
sign, of spin-exchange energy associated with two NN
sites i and j depends on their orbital occupations and the
direction of the ij bond. The strongest bond in the generic
� plane is characterized by both sites with � occu-
pancy: We shall call it b0. Its exchange interaction is AFM
and its spin Hamiltonian is given by
Hb0 � �1� 2�� 4�1� 2�
 ~Si 	 ~Sj.

When the two sites of bond ij in the � plane are
occupied by one �� and one � orbitals � �  (bond
b1), one gets a weak FM interaction:
Hb1 � �1� �=2� 2� ~Si 	 ~Sj.

Finally, the two sites of bond ij in the � plane can be
occupied by one �� and one � orbital (bond b2), or by
two �� (or �) orbitals (bond b3). These bonds are non-
interacting, as far as only dd� overlap is considered.

Single tetrahedron.—In one tetrahedron there are ba-
sically three possible orbital configurations to be consid-
ered (see Fig. 1): (A) All four sites have the same orbital
occupancy (say xy) and thus only the two bonds in the xy
077208-2
plane [shown by solid lines in Fig. 1(a)] give a nonzero
energy contribution. (B) The two sites in one � plane,
e.g., xz, are both occupied by xz orbitals, while at least
one of the two sites in the other xz plane is occupied by xy
or yz orbitals [Fig. 1(b)]. (C) No bonds ij in the plane �
of the tetrahedron is such as to have both sites occupied
by the � orbital [Fig. 1(c)]. These three configurations
are the bricks that allow the orbital pattern to be built
throughout the whole pyrochlore lattice. Because of the
Ising form of orbital interactions, in the following we can
focus simply on these three cases, relying on the fact that
configurations with a linear superposition of orbitals on
each site must have a higher energy. We shall do only one
exception to study a case with a particular physical mean-
ing, i.e., that of a ‘‘cubic’’ symmetry, where each site is
occupied by a linear superposition with equal weights of
the three orbitals 1��

3
p �jxyi � jxzi � jyzi
 (case D).

Pyrochlore lattice.—Here we consider possible cover-
ings of the lattice through the various tetrahedra.

(i) Heisenberg chains: When all tetrahedra of a pyro-
chlore lattice are of type (A) (ferro-orbital ordering) then
the effective Hamiltonian (1) can be mapped into a set of
one-dimensional decoupled Heisenberg chains. If, for
example, all occupied orbitals are of xy type, all chains
in �1;�1; 0� cubic directions [see Fig. 1(a)] are decoupled.
The only interactions are due to AFM b0 bonds described
above. Thus, the ground-state energy per site can be
evaluated exactly by using the results for a Heisenberg
1D chain [13]: EA � �2:77�1� 2��.

(ii) Dimer phase: This state is made of (B)-type
tetrahedra. We distinguish three types of such tetrahedra.
All three are characterized by one strong b0 bond, in an
� plane. The other two ions in the opposite � plane
can either be occupied by two �� (�) orbitals forming a
b3 bond [case B1, the one shown in Fig. 1(b)], or by one
�� and one � orbital, linked in a b1 bond (case B2), or,
finally, by one �� and one � orbital, forming a b2 bond
(case B3). Since b2 and b3 bonds do not contribute to the
energy, this latter depends only on the number, nb0 and
nb1 , of b0 and b1 bonds in the unit cell. As all three Bi
configurations are characterized by nb0 � 1 and nb1 � 2,
all possible coverings of the pyrochlore lattice by Bi
tetrahedra have the same energy, even if �nb2 ; nb3� are
different for three Bi tetrahedra [(2,1) for B1, (1,2) for B2,
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(3,0) for B3]. When the pyrochlore lattice is covered by
Bi-type tetrahedra (two possible coverings are shown in
Fig. 2), each spin is engaged in one strong AFM b0 bond
and two weak FM b1 bonds. Such coverings form a
degenerate manifold and the corresponding energy can
be calculated as follows. In the limit �! 0, the spin-only
Hamiltonian can be solved exactly, as it can be decom-
posed into a sum of spin-uncoupled b0 bonds. In this case
the energy minimum is reached when the Heisenberg
term of the b0 bond is the lowest, i.e., for a pure quantum
spin singlet ( ~Si 	 ~Sj � �3=4). Remarkably, such spin-
singlet (dimer) states, in the limit �! 0, are also exact
eigenstates of the full Hamiltonian (1). As �� 1, the
dimer state is stable against the weak FM interdimer
interaction. In this case the magnetic contribution along
the FM b1 bond is zero (h ~Si 	 ~Sji � 0 for i and j belonging
to different dimers) and we are led to an energy per site
given by EB � Eb0=2� Eb1 � �3� 7

2�. Here Eb0�1� is the
energy of the bond b0�1�.

(iii) FM order: Consider the state where all tetrahe-
dra are of type (C) [see Fig. 1(c)]. There are four interact-
ing FM b1 bonds and two noninteracting bonds (b2 and
b3) per tetrahedron. The ground state for this case is, thus,
ferromagnetic with an energy EC � 2Eb1 � �2�1� ��.

(iv) Frustrated AFM: The realization of this phase
restores the full pyrochlore lattice symmetry, thus de-
scribing an ideal cubic phase. All bonds are equivalent
and by averaging Eq. (1) over the orbital configurations
on neighboring sites i and j, we obtain the spin
Heisenberg Hamiltonian on the pyrochlore lattice: HD �
P

hiji��5=9� �4=9� 16�=9
 ~Si 	 ~Sj�. The system is thus
highly frustrated and its ground state is a spin liquid [2],
whose energy per site is ED ’ �1:89� 0:89�. Here we
FIG. 2. Two different coverings of the unit cubic cell through
dimers, phase (ii). The same notations as in Fig. 1 are used.
Locations of singlets are represented by thick links. Different
numbers correspond to inequivalent tetrahedra. (a) The experi-
mental phase of MgTi2O4: the helical dimerization pattern
(indicated by arrows) is formed by alternating short b0 and
long b3 bonds. All tetrahedra are in phase B1. (b) a different
covering of the cubic cell through all Bi tetrahedra. The
inclusion of the magnetoelastic coupling pushes these states
higher in energy.
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have used the ground-state energy estimated �1=N�
P
ij
~Si 	

~Sj ’ �0:5 on the pyrochlore lattice [14].
(v) Mixed (A) and (C) configuration: It is possible to

cover the pyrochlore lattice also by means of a mixed
configuration with (A)- and (C)-type tetrahedra. It can be
visualized from Fig. 2(b) if, e.g., the four labeled tetrahe-
dra would be of (A) type, with two spin singlets on strong
b0 bonds and three different orbital occupancies, and the
four unlabeled tetrahedra of (C) type with no spin sin-
glets. This dimer configuration is degenerate with the
dimer phase (ii) as far as only dd� overlap is considered,
as, on average, nb0 � 1 and nb1 � 2. Yet, in this case
nb2 � 1=2 and nb3 � 5=2, and the degeneracy is removed
by dd� overlap in favor of the dimer phase (ii) (for which
nb2 � 1), as the energy gain of the b2 bond is �t2�=�4t2

(in units of J), while that of the b3 bond is �t2�=�8t2
.

Ground-state manifold.—On the basis of the previous
energy considerations, a simple phase diagram can be
derived, in terms of �, the only free parameter available.
For � � 0 the lowest ground-state energy is that of phase
(ii).With increasing � we find only one phase transition at
�c � 2=11 ’ 0:18, between the dimer phase (ii) and the
FM phase (iii). As �c is above our estimated value of � ’
0:15, we can conclude that the ground state of MgTi2O4 is
described by phase (ii) and is characterized by a frozen
pattern of spin singlets throughout the whole pyrochlore
lattice that removes the original spin degeneracy.
Nonetheless, there is still a remaining degeneracy to be
lifted. It is related to the freedom in the choice of the two
orbitals on the tetrahedron bond opposite the one of the
singlet. Different choices of these orbitals give rise to
inequivalent covering patterns of the pyrochlore lattice
with one dimer per tetrahedron (see Fig. 2). This degen-
eracy is given by the number of such dimer coverings and
the corresponding number of states can be estimated to
grow with the system size as N � 3NT �

���
3

p
N [15]. Here

NT � N=2 is the number of tetrahedra and we have
ignored the contributions coming from closed loops (hex-
agons) on the pyrochlore lattice. This ground-state mani-
fold is different from a resonating valence-bond state,
since each dimer covering is frozen in an exact eigenstate
of the Hamiltonian (1) for � � 0. For finite � the differ-
ent dimer patterns are not connected by the Hamiltonian:
The bond corresponding to the dimer in each tetrahedron
is fixed, being determined by orbital pattern, and orbital
degrees of freedom are Ising-like variables.

Lifting of degeneracy.—The above discussed degener-
acy cannot be removed within the Kugel-Khomskii-type
model, not even introducing dd� and dd$ overlaps. The
reason is related to the fact that the energy gain depends
only on the total number of each type of bond (nb0 , nb1 ,
nb2 , nb3) in the unit cell and, in order to fill the whole
crystal with a periodicity not lower than the one of the
primitive cubic cell shown in Fig. 2, the average number
077208-3
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of bonds nbi per tetrahedron is the same, whichever of the
three building blocks B1, B2, or B3 is used. It is given by
nb0 � 1, nb1 � 2, nb2 � 2, nb3 � 1, and it corresponds to
the value of case B1, which is the only one that allows
coverage of the whole cubic cell without mixing other
configurations [see Fig. 2(a)]. Associated with the B1

phase, we have the minimal cell enlarging (doubling
instead of quadrupling), and the maximal space subgroup
(P41212) of the original face-centered Fd3m cubic cell.

In order to substantiate these geometrical considera-
tions, we need to find the physical mechanism that re-
moves the B-manifold degeneracy in favor of the B1 state.
From the above discussion it follows that only correla-
tions between bonds can lift it. These correlations natu-
rally appear if the magnetoelastic contribution to the
energy is considered, as the orbitally driven modulations
of the spin-exchange energies distort the underlying lat-
tice through the spin-Peierls mechanism. In the degener-
ate B manifold, every tetrahedron is characterized by a
strong exchange on the bond b0 where the singlet is
located. A reduction of the bond length enlarges the
energy gain, because of the increase in the dd� overlap.
This selects the triplet-T deformation mode from the
irreducible representations of the tetrahedron group,
which is the only one that singles out one shorter bond
[16]. This mode generates a tetragonal distortion of the
tetrahedron, with short and long bonds located opposite
each other and four intermediate bonds. Because of this
mechanism, the position of the two b1 bonds in the
tetrahedron is uniquely determined: In order to maximize
the superexchange energy gain by keeping the highest
value for t�, the intermediate-strength b1 bonds are not
allowed to lie on the long bond opposite to the singlet b0.
The elongation of the weak bonds of b3 type is energeti-
cally more favorable. It is possible to check that the only
possibility to have such a constraint for the whole cell is
realized for the state B1 [Fig. 2(a)]. On the contrary, both
cases B2 and B3 [Fig. 2(b)] do not allow coverage of the
cell without at least one b1 bond lying opposite to the
singlet edge [e.g., tetrahedron 4 in Fig. 2(b)], thus with an
extra-energy cost. Hence, the energy is minimized when
all tetrahedra are of B1 kind, with a T-type tetragonal
distortion. In this state all dimers are condensed in the
ordered helical pattern shown in Fig. 2(a) and form a
VBC. This dimerization pattern exactly reproduces the
one observed in the insulating phase of MgTi2O4 [7]. The
present theory also predicts a peculiar orbital ordering in
the dimerized phase: a ferro-orbital order along the heli-
ces with antiferro-orbital order between them [see
Fig. 2(a)]. This orbital ordering can undergo an experi-
mental test through Ti K edge natural circular dichroism,
which is sensitive to the chirality of a t2g orbital order
along the helix, when x rays are shone along the helical
axis.
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Within the present scenario two transition tempera-
tures are expected. The highest Tc1 , determined by the
exchange coupling within the singlet (Tc1 � J3 ’ 4J ’
1000 K), corresponds to the transition from a paramagnet
to a spin gap (dimer) state, with a ferro-orbital order on
each dimer. This state can be regarded as a weakly inter-
acting gas of dimers and is highly degenerate with respect
to the dimers orientation. At the lowest transition tem-
perature, given by the magnetoelastic coupling, this de-
generacy is lifted through the spin-Peierls distortion. At
this temperature dimers condense and form the VBC
shown in Fig. 2(a). The entropy involved in this transition
is estimated to be � ln�N 
=N � ln

���
3

p
. In the case of

MgTi2O4, it is known [6] that, with increasing tempera-
ture, this compound goes from an insulating to a metallic
phase at Tc2 ’ 260 K. The transition to the metallic state
rules out the possibility of a high-temperature spin-
singlet state with disordered dimers and does not allow
evaluation of the order of magnitude of the magnetoelas-
tic coupling. We can just estimate its lower limit as about
1=4�’ Tc2=Tc1� of the singlet-binding energy.
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