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The critical properties of the N-color London model are studied in d = 2 + 1 dimensions. The model
is dualized to a theory of N vortex fields interacting through a Coulomb and a screened potential. The
model with N = 2 shows two anomalies in the specific heat. From the critical exponents « and v, the
mass of the gauge field, and the vortex correlation functions, we conclude that one anomaly corresponds
to an inverted 3Dxy fixed point, while the other corresponds to a 3Dxy fixed point. There are N fixed
points, namely, one corresponding to an inverted 3Dxy fixed point, and N — 1 corresponding to neutral
3Dxy fixed points. This represents a novel type of quantum fluid, where superfluid modes arise out of

charged condensates.
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Ginzburg-Landau (GL) theories with several complex
scalar matter fields minimally coupled to one gauge field
are of interest in a wide variety of systems, such as
multiple component (color) superconductors, metallic
phases of light atoms such as hydrogen [1,2], and as
effective theories for easy plane quantum antiferromag-
nets [3—5]. The model also is highly relevant in particle
physics where it is called two-Higgs doublet model [6]. In
metallic hydrogen the scalar fields represent Cooper pairs
of electrons and protons, which excludes the possibility of
intercolor pair tunneling, i.e., there is no Josephson cou-
pling between different components of the condensate.
The same two-color action in (2 + 1) dimensions, where
the matter fields originate in a bosonic representation of
spin operators, is claimed to be the critical sector of a field
theory separating a Néel state and a paramagnetic (va-
lence bond ordered) state of a two-dimensional quantum
antiferromagnet at zero temperature with an easy plane
anisotropy present [3,5]. This happens because, although
the effective description of the antiferromagnet involves
an a priori compact gauge field, it must be supplemented
by Berry phase terms in order to properly describe § =
1/2 spin systems [7,8]. Berry phases cancel the effects of
monopoles at the critical point [3,5]. In this Letter, we
point out novel physics of the quantum fluid that arises
out of an N-color charged condensate when no intercolor
Josephson coupling is present.

For a detailed analysis of the phase transitions in such a
generalized GL model, we study an N component GL
theory in (2 + 1) dimensions with no Josephson coupling
term. The model is defined by N complex scalar fields
{¥@(r)|a = 1...N} coupled through the charge e to a
fluctuating gauge field A(r), with Hamiltonian

[(V — ieA)W@)|2

Z M@
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where M@ is the a-component condensate mass. The
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potential V({¥@(r)}) is assumed to be only a function
of |¥@(r)2. The model is studied in the phase only
(London) approximation W(®(r) = I‘lfga)l exp[i0@(r)]
and is discretized on a lattice with spacing a = 1 [9]. In
the Villain approximation the partition function reads

z= " DAl_[f fDG(V)l_[Zexp(—S),

1 n(m
N (@)2
_ Bl\PO | (a) (@))2
r La=I
+§(A X A)Z}

where n'®(r) are integer vector fields ensuring 27 peri-
odicity, and the lattice position index vector r of the fields
is suppressed. The symbol A denotes the lattice difference
operator and 8 = 1/T is the inverse temperature. Here,
we stress the importance of keeping track of the 2w
periodicity of the individual phases. The kinetic energy
terms are linearized by introducing N auxiliary fields
v(®_ Integration over all #@ produces the local con-
straints A - v(¢) = 0, which are fulfilled by the replace-
ment V¥ — A X h®. We recognize h'®@ as the dual
gauge fields of the theory. By fixing the gauge nga) =0
and performing a partial integration we may introduce
the vortex fields m®@ = A X n(®. We integrate out the
gauge field A and get a theory in the dual gauge fields h(®)
and the vortex fields m(® where A - m(@ =0

(a
S = Z[Zm Z m@ - h(@ + Z (A X by

2B
3(2 )]

where [(@]? = I\Ifg)a)lz/M(“). Note how the algebraic
sum of the dual photon fields is massive. This differs

3)

© 2004 The American Physical Society 077002-1



VOLUME 93, NUMBER 7 PHYSICAL REVIEW LETTERS 13 X%eéglslgflgg()04
from the case N = 1, where e produces one massive dual 1000 '
photon with bare mass ¢?/2, and the model describes a =y a7 04
vortex field m interacting through a massive dual gauge ) . i;g;—’;%
field h. However, when N =2, since A -m® =0, a o B T ¥ -
gauge transformation h@ — h@ + Ag® for o = e T : <
1...N leaves the action invariant if one of the gauge \"‘_;;«:.‘x
fields, say h™ compensates the sum in the last term in 1001 »,;.,»,:—""";u T ‘A 1 0.01
(3) with Ag™ = _Za¢nAg(a)' A e .\ .

Integrating out the dual gauge fields we get a general- a ey
ized theory of N interacting vortex fields ‘

10
Z=3 Y Bamng Bammg X €, -
m ™ 4) FIG. 1. The FSS of the peak-to-peak value of the third

Sy = Z zm(“)(r)D(“'n)(r — rYm"(r/),

rr an

where é‘x’y is the Kronecker delta, and the vortex inter-
action potential D@n(r) is the inverse discrete Fourier
transform of D(a'n)(q), where

ﬁ(a,”l)(q) _ )\("I)
2Bl @2 1Qql* + mG

Sum — A
1Q,?

A = | @2/y? and ¢? = SN_ |92 Here, m} =
e?y? is the square of the bare inverse screening length
in the intervortex interaction, and IQqI2 is the Fourier
representation of the lattice Laplace operator. The first
term of the vortex interaction potential (5) is a Yukawa
screened potential, while the second term mediates long
range Coulomb interaction between vortex fields. If N =
1 the latter cancels out exactly and we are left with the
well studied vortex theory of the GL model, which has a
charged fixed point for e # 0 [10,11]. For N = 2 we find a
theory of vortex loops of N colors interacting through
long range Coulomb interaction. If N goes to infinity, then
¢2 — oo and, therefore, the vortex fields interact via a
diagonal N X N Coulomb matrix. This reflects the inabil-
ity of one single gauge field A to screen a large number of
vortex species. The case N =2 has features with no
counterpart in the case N =1 [9,11], namely, neutral
superfluid modes arising out of charged condensates.
The above vortex system may be formulated as a field
theory, introducing N complex matter fields ¢(® for each
vortex species, minimally coupled to the dual gauge
fields h®. This generalizes the dual theory for N = 1
pioneered in [12]. The theory reads (see also [5])

&)

N
Saua = z{z [malw)lz 1A — ih@)p@P?

r la=l1

(A X h@®)?2 2 Y 2
= 7 = h(@
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moment AMj; labeled ((J) and (+) for T, and T, respectively.
The scaling of the width between the peaks A 8 labeled (A) and
(X)) for T,; and T,, respectively. The lines are power law fits
to the data for L > 6 used to extract @ and ».

Here we have added chemical potential (core energy)
terms for the vortices as well as steric short-range repul-
sion interactions between vortex elements. In the N = 1
case, a renormalization-group method treatment of the
mass term of the dual gauge field yields de?/dInl = &2,
and hence this term scales up, suppressing the dual gauge
field. Correspondingly, for N = 2, this suppresses Zah(“),
but not each individual dual gauge field. For the particular
case N = 2, assuming the same to hold, we end up with a
gauge theory of two complex matter fields coupled mini-
mally to one massless gauge field, which was also pre-
cisely the starting point. Thus the theory is self-dual for
N = 2[4,5]. For N = 1, it is known that a charged theory
in d =2 + 1 dualizes into a |¢|* theory and vice versa
[11]. The vortex tangle of the 3Dxy model is incompress-
ible and the dual theory is a massless gauge theory such
that (¢) # 0 is prohibited. For e # 0, the dual theory has
global symmetry, and vortex condensation and (@) # 0 is
possible [11].

For N = 2, Monte Carlo (MC) simulations have been
carried out for the action (4) with parameters |V|? =
1/2, [p@> =1, € = 1/4, and m} = 3/8. Here, |V|?
and |/ |? have been chosen to have well separated bare
energy scales associated with the twist of the two types of
phases, and m has been chosen to be of the order of the
inverse lattice spacing in the problem to avoid difficult
finite-size effects. One MC update consists of inserting
elementary vortex loops of random direction and species
according to the Metropolis algorithm.

We observe two anomalies in the specific heat at T
and T, where T,y < T,.We find T, and T, from scaling
of the second moment of the action {(Sy — (Sy))?) to be
T, = 1.4(6) and T, = 2.7(8). To check the criticality of
these anomalies we have calculated the critical exponents
a and v by applying finite-size scaling (FSS) of M5 =
((Sy — (Sy))?) [13]. The peak-to-peak value of this quan-
tity scales with system size L as LU+9/7  the width
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between the peaks scales as L~!/”. The advantage of this
is that asymptotically correct behavior is reached for
practical system sizes. The FSS plots for system sizes L =
4,6, 8,10, 12, 14, 16, 20, and 24 are shown in Fig. 1.

From the scaling we conclude that both anomalies are
in fact critical points, and we obtain a = —0.02 = 0.02
and v = 0.67 = 0.01 for 7,; and @ = —0.03 = 0.02 and
v = 0.67 £ 0.01 for T,,. These values are consistent with
those of the 3Dxy and the inverted 3Dxy universality
classes found with high precision to be @ = —0.0146(8)
and v = 0.67155(3) [14].

To characterize these phase transitions further, we

consider Ga(q) = (A, - A_,) and Gsu(q) = <(Zah(qa)) :

(5.h“), expressed in terms of G*)(g) =
(Sl @Pm{?) as
2/B 27 Bmy  G™(g)
= 1 B
640 = e (! T )
5 5 A (7
PO T B
20 gl Ty )

The masses of A and ¥, h'@ are defined by m% =
lim,_02GA(¢q)"'/B and m%, = lim,_o2B¢*Gsn(q)~".

We briefly review the case N = 1 [11]. The dual field
theory of the neutral fixed point (m} = 0) is a charged
theory describing an incompressible vortex tangle. The
leading behavior of the vortex correlator is
limg_27°BG' ) (q) ~ [1 = Co(T)]g*, ¢* — C5(T)g*™ ™,
and ¢> + C,(T)q* for T<T., T=T, and T >T,, re-
spectively. For T < T, we have rr12Eh =0 (N = 1), how-
ever for T>T, the 1/¢* terms in Gsy(g) cancel out
exactly and this mass attains an expectation value. At
the charged fixed point (m3 # 0) of the GL model, the
effective field theory of the vortices is a neutral theory.
The vortex tangle is compressible with a scaling ansatz
for the vortex correlator lim,_,G'*)(g) ~ ¢%, ¢* ", and
c(T) for T<T,, T=T, and T =T, respectively.
Consequently, from (7), the mass m, drops to zero at
T., and the mass of the dual gauge field my, is finite for
all temperatures and has a kink at 7,.. Renormalization
group arguments yield n, = 4 — d where d is the dimen-
sionality [10,15], which has recently been verified nu-
merically [11,16].

The vortex correlator for N =2 is sampled in real
space and G'7)(g) is found by discrete Fourier transfor-
mation, it is shown in Fig. 2. At T = T, the leading
behavior is G(g) ~¢> on both sides of T,.
Consequently, due to (7), m, and my), are finite in this
regime. This shows that the vortex tangle is incompress-
ible and that the anomalous scaling dimension 4, = 0
corresponds to a neutral fixed point. Below T, the domi-
nant behavior is G'")(g) ~ ¢> whereas G (g) ~ ¢(T)
above T,,. At T =T,,, G'Y(q) ~ ¢ indicating n, = 1.
Accordingly, m, is finite below T, and zero for T = T,.
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FIG. 2. G™)(g) for N=2,L =32 ForT =286>T,, T =

276 =T,, and T = 2.63 < T, limg_¢G(q) ~ c(T), ~q,
and ~g?, respectively.

For T < T.,, m, scales according to Gu(g)~ !X

% =m3 + Cq* ™ + O(¢q®) for small ¢ where § >2 —
14 [16], with a corresponding ansatz for Gy, (q). For each
coupling we fit G5(g)~! data from system sizes L = 8,
12, 20, and 32 to the ansatz. The results for m, (and msyy,,
found similarly), are given in Fig. 3. The system exhibits
Higgs mechanism at T = T, when m, drops to zero.
Furthermore m, has a kink at 7, due to ordering of
6. The anomalies in m, coincide precisely with T, and
T, determined from scaling of {(Sy — (S ))?). Note also
how myy, changes abruptly at T,. This is due to a sudden
change in screening of Zg’:l h@ by the vortex-loop
proliferation at T = T,,, giving an abrupt increase in
msy,, analogously to what happens for N = 1, e # 0 [11].

Above T,,, A is massless, giving a compressible vortex
tangle which accesses configurational entropy better than
an incompressible one. Below T, A is massive and
merely renormalizes |W|* terms in Eq. (1). The theory is
effectively a | W|* theory in this regime. Thus, the remain-
ing proliferated vortex species originating in the matter
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FIG. 3. The mass my (®) and 1 — my/myy, (+) found from

Eq. (7). Two nonanalyticities can be seen in m, at T,; and T,,
corresponding to a neutral fixed point and a charged Higgs
fixed point, respectively. An abrupt increase in myy due to
vortex condensation is located at T,.
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fields with lower bare stiffnesses form vortex tangles as if
they originated in a neutral superfluid. For the general N
case, a Higgs mass is generated at the highest critical
temperature, after which A merely renormalizes the |W|*
term, such that the Higgs fixed point is followed by N — 1
neutral fixed points as the temperature is lowered.

We now discuss the vortex mode m¥’ — m®@, demon-
strating that it should be identified as a superfluid mode in

the system. Its properties are controlled by Gan(g) =
<|h£,l) - h£,2>|2>. A dual Higgs phenomenon for N = 2,
T = T, involving Gxp(g) may be demonstrated as fol-
lows. Introducing G(g) =(m{’ —mP]? and
G™(g) = ((my’ —m) - (S2_, ¢ “Pm'}) we find,
in the notation used in Eqgs. (5) and (7)

8BADAD 2 22 BADAD y2G)(g)
GAh(q) = ) {1 - B

Q] Q]
272 B(AY = A2)G™)(g)
|QqI* + m§
—A@)2Gsp(q).

The G7)(gq) correlation function is always ~¢2, g — 0,
but has a nonanalytic coefficient of g2, determined by the
helicity modulus Y of the neutral mode m") — m®,
When Y vanishes at T,; through a disordering of 6,
thus destroying the superfluid neutral mode, the first and
second term in the bracket cancel, which in turn cancels
the 1/g% term in Gap(q). This produces a dual Higgs mass
myp defined by Gap(g) ~ 1/(¢* + m3,) for T > T,,. The
remaining terms in Eq. (8) contribute to determining the
actual value of myp. Thus, while h + h® is always
massive, cf. Equation (3), h) — h® is massless below
T.; and massive above T;. Therefore h) — h® plays the
role of a gauge degree of freedom, providing a dual
counterpart to A in Eq. (1). This is evident when |¢V|? =
|@|2. Then Eq. (8) for N = 2, e # 0 has the same form
as the dual gauge field correlator for the case N = 1, e =
0, which exhibits a dual Higgs phenomenon [11]. Thus, for
N =2, ¢ # 0,m) — m® behaves as vortices for N = 1,
e =0, ie, it is a superfluid mode arising out of super-
conducting condensates. A nonzero myy, is produced by
disordering 8V at T,, while a nonzero m, is destroyed by
disordering ? at T,,.

We have analyzed the N-color London model Eq. (2) in
vortex representation Egs. (4) and (5). The dual theory is
given by Egs. (3) and (6). For N = 2, we have performed
large scale Monte Carlo simulations computing (i) critical
exponents « and v, (ii) gauge field and dual gauge field
correlators, (iii) the corresponding masses, and (iv) criti-
cal couplings using FSS. For ¢ # ® we find one
neutral low-temperature critical point at T,;, and one
charged critical point at T, > T.;. For general N, a
Higgs mass m, is generated at the highest critical tem-

} + (A0 (8)
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perature, followed by N — 1 neutral fixed points as the
temperature is lowered.

These results apply to electronic and protonic conden-
sates in liquid metallic hydrogen under extreme pressure.
Estimates exist for T, for such systems, 7., = 160 K [2],
and hence T,; = 0.1 K. Hence, in addition to the emer-
gence of the Meissner effect at T, and a corresponding
divergence in the magnetic penetration length A ~ |1 —
T/Tczlf”/(Q*"A) [17], there will also be a novel effect,
namely, a low-temperature anomaly in the magnetic
penetration length A ~ 1/m, at T, cf. Figure 3, due to
the appearance of superfluid modes arising from super-
conducting condensates.
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