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Detection of Topological Transitions by Transport Through Molecules and Nanodevices
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We analyze the phase transitions of an interacting electronic system weakly coupled to free-electron
leads by considering its zero-bias conductance. This is expressed in terms of two effective impurity
models for the cases with and without spin degeneracy. Using the half-filled ionic Hubbard ring, we
demonstrate that the weight of the first conductance peak as a function of external flux or of the
difference in gate voltages between even and odd sites allows one to identify the topological charge
transition between a correlated insulator and a band insulator.
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FIG. 1. Interacting electron system on a flux-threaded ring,
connected by weak links (t0) to two conducting leads.
Progress in nanotechnology has made it possible to
perform transport experiments on systems as small as
single molecules [1]. Metallic [2] or semiconducting [3–
5] quantum dots (QDs) can now be assembled into arti-
ficial molecules [4] or solids [2]. QD molecules of differ-
ent materials and sizes are now being investigated and a
wide range of new QD systems is expected to be synthe-
sized in the near future [3,4]. The transport properties of
a finite chain of 15 QDs were first measured over ten years
ago [5], and the metal-insulator transition has been
studied experimentally in a hexagonal lattice of Ag
QDs [2]. These advances open the route for new ap-
proaches to investigate novel phenomena and theoretical
concepts in interacting electron systems.

Here we focus on one such phenomenon: the topologi-
cal phase transition associated with a parity change of the
ground state. The ionic Hubbard model (IHM) with alter-
nating diagonal energy � 1

2 � has received much recent
attention [6–10]. It was proposed to describe the neutral-
ionic transition in organic charge-transfer salts [11], and
later applied to model ferroelectricity in perovskites
[6,12]. At half filling and in the atomic limit (t! 0),
the ground state is a band insulator (BI) forU < � but is a
Mott insulator (MI) for U >�. In one dimension, with
nonzero hopping t, a spontaneously dimerized insulator
(SDI) phase appears between BI and MI. With increasing
U, one finds first a charge transition at U � Uc from BI to
SDI, followed by the closing of the spin gap at Us > Uc,
where the transition to the MI occurs. Although in finite
systems conventional order parameters such as charge and
spin structure factors vary continuously at a phase tran-
sition, in a system of L sites one may define charge and
spin topological numbers which change discontinuously
at Uc�L� andUs�L� [8]. The charge Berry phase has a step
atUc�L�, where a parity change of the ground state occurs
for periodic (antiperiodic) boundary conditions if L �
4m (L � 4m� 2, m integer) [6,8].
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Here we show that this charge transition can be de-
tected using the total intensity or widthw of the first peak
in a zero-bias conductance measurement performed on a
flux-threaded ring. The importance of the ring geometry
is that the topological transition is absent in an open
system [9]. In one of the two parity sectors, which is
selected using an applied gate voltage, w! 0 for applied
flux 
! 0 if L � 4m (
! 
0=2, where 
0 � hc=e is
the flux quantum, if L � 4m� 2). Thus the transition,
which is observed by varying parameters such as �, may
also be studied in ring-shaped molecules where it is not
possible to attain a significant threading flux.

The configuration for the proposed experiment is illus-
trated in Fig. 1. The interacting electron system on the
ring is connected to conducting leads through two sites,
labeled 0 and n, by weak links with hopping t0, and either
two materials or two different gate voltages at alternating
sites may be used to model the IHM. It is essential to
distinguish between the two cases depending on the spin
degeneracy of the isolated interacting system for odd
particle number. We thus perform two different calcula-
tions of the conductance. The first assumes that spin
degeneracy is lifted by a Zeeman interaction but allows
orbital degeneracy of the states, which is important when
including interference effects arising in a ring geometry
[13]. In the second, where spin degeneracy is retained, we
map the problem into an effective Anderson model
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(EAM) and express the conductance as a function of the
spectral density of the latter.

If the ground state jgi of the interacting system is
nondegenerate, for small t0 the links can be eliminated
by a canonical transformation, leading to an effective,
noninteracting Hamiltonian for the two leads in which
the two ‘‘impurity’’ sites i connected to the links ( 
 1
and 1 in Fig. 1) have an energy shift �i�!�, and are
connected by an effective hopping teff�!�,
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L (R) refers to the lead containing the site 
1 ( � 1). The
impurity parameters are given in terms of Green func-
tions for the isolated ring gij�!� � hhci�; c

y
j�ii,

�
1�!� � t02g00�!�; �1�!� � t02gnn�!�;

teff�!� � t02gn0�!�:
(2)

Without affecting the essential results, we assume
identical leads and, for their states without sites �
1; 1�,
we consider two models for the density of states ��!� and
the hybridization Vj�!� with sites �
1; 1�: (I) ��!� and
Vj�!� constant: for j � �1 and teff � 0, geff0jj �!� �
1=�!
 �j � i�� with � � ��V2; (II) leads described
by a tight-binding model with nearest-neighbor hopping

t, where geff0jj �!� � 1=!=2
 �j � i��!�� with ��!� �

���!�V2�!� �
����������������������
t2 
!2=4

p
. By introducing an integer

m � 1 or 2 for cases I and II, the transmittance
T�!;Vg� becomes

T �
4�2jteff j2

j!m
 �
1 � i��
!
m
 �1 � i�� 
 jteff j

2j2
: (3)

Vg is a gate voltage, which changes the on-site energy of
all sites of the ring by 
eVg. In case II this equation is
exact (8 t0) in the noninteracting system and generalizes a
previous result [13]. Equation (3) also generalizes pre-
vious approaches in which only one intermediate state of
the ring is included [14,15] and is appropriate for the
study of interference effects [13]. Spin degeneracy limits
its validity to magnetic fields B for which the Kondo
effect is destroyed, as discussed below. For sufficiently
large Zeeman energy g�BB, the zero-bias conductance at
steady state is given by G � G0T��;Vg�=2, where G0 �

2e2=h and � is the chemical potential of the leads. The
results of Ref. [16] suggest that Eq. (3) remains valid, with
G � G0T��;Vg�, also in the absence of Zeeman splitting
in an intermediate temperature range T1 < T < 0:1w,
where T1 is very small. Henceforth we set � � 0, corre-
sponding to half-filled leads.
T�Vg� is very small, except at the poles of gn0. If the

ground state jgi has N particles for � � 0, the ground-
state energy Eg�N� satisfies Eg�N� 
 eVg < Eg�N 
 1�
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and Eg�N� � eVg < Eg�N � 1�. As Vg is increased, a
pole in gn0�Vg� is reached, and for larger Vg the ground
state has N � 1 particles. Similarly, if Vg is lowered, a
pole is reached when z � eVg � Eg�N 
 1� 
 Eg�N� � 0.

Assuming that the state of lowest energy for N 
 1
particles, jg�N 
 1�i, is not degenerate, gij may be ex-
pressed as a Laurent expansion around z � 0,

gij�z� �
ai �aj
z

� %ij � &ijz� � � � ; (4)

where %jj, &jj, and . . . are real coefficients and

aj � hg�N 
 1�jcj�jg�N�i: (5)

'j � jajj2 is the spectral weight for a local photoemis-
sion process. Substituting these expressions in Eqs. (2)
and (3), retaining terms to lowest nontrivial order in
t0=��0�, and using that T�z� �O�1� for z & �t0�2=��0�
yields

T�z� �
1

1� �w=z�2
4'0'n

�'0 � 'n�
2 �O�t

0=��0��2�; (6)

where the half-width at half maximum peak height is

w � �'0 � 'n��t
0�2=��0�: (7)

Using G � G0T��;Vg�, this expression coincides at suf-
ficiently low temperatures with Eq. (7) of Ref. [15].

If sites 0 and n are equivalent by symmetry, then w �
2�t0�2'0=��0� and the integrated weight I �

R
dzT�z� �

�w are both proportional to �t0�2 and to '0. If Vg is
increased instead of decreased, the same result is ob-
tained with cj� ! cyj� and N 
 1 ! N � 1 in Eq. (5).
Thus a single transport measurement gives simultaneous
spectral information related to photoemission and to in-
verse photoemission. We stress that this information is
obtained with much finer energetic resolution (�eV) than
that available by direct spectroscopic techniques (meV).

We turn next to a calculation of the conductance for
small or zero B, where either jg�N�i or jg�N � 1�i is spin
degenerate. This degeneracy can be taken into account
accurately if w is small compared to the separation be-
tween groups of spin-degenerate energy levels, because
the problem becomes equivalent to an EAM. We take Vg
such that a nondegenerate state jg�N�i is close in energy to
the spin-degenerate state jg�N 
 1�i. Extension to other
cases is straightforward. Neglecting other states, the
EAM for any interacting system between the leads is

HA � 
t
X

�;i�0;1

cyi�ci
1� 

X

�

dy��t0
1c
1� � t01c1�� � H:c:

�"d
X

�

nd� �UAnd"nd# 
 g�BB�nd" 
 nd#�; (8)

with nd� � dy�d�, t0
1 � t0 �a0, t01 � t0 �an, "d � Eg�N� 

Eg�N 
 1� 
 eVg, and infinite UA ( justified because
UA � Eg�N� � Eg�N 
 2� 
 2Eg�N 
 1� � w).
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FIG. 2. Conductance as a function of gate voltage for the
EAM at several magnetic fields. Circles correspond to the
conductance of a resonant level for the majority spin only.

FIG. 3. Transmittance as a function of gate voltage for an
eight-site IHM ring with leads at sites 0 and 2 for tR � 1, t0 �
0:2, � � 
3, and values of U below and above Uc�L � 8�.
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FIG. 4. Transmittance as a function of Vg for a ring of eight
QDs described by the IHM. The parameters chosen are U �
1 meV, � � 
3U=4, t � U=4, t0=t � 0:2, and g�B �
0:025 meV=T. The curves have been shifted in Vg (cf. lower
panel Fig. 3) such that their maxima coincide.
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The conductance is given by

G �
2e2

h
2�wjt01t

0

1j

2

jt01j
2 � jt0
1j

2�

X

�

�d����; (9)

where �d��!� is the spectral density of the effective d�
electrons [17]. The conductance of the EAM computed as
a function of gate voltage for several values of B using
slave bosons in the mean-field approximation (SBMFA)
[18] is shown in Fig. 2. For B � 0, G increases abruptly
from 0 to G0 when z� 0 and remains nearly perfect for
higher Vg due to pinning of the Kondo peak in �d��!� at
the Fermi level. However, because the Kondo energy scale
TK decreases exponentially with Vg, even for very small
B the plateau becomes a broad peak, terminated when
TK < g�BB, beyond which G falls to zero. The abrupt-
ness of the fall is an artifact of the SBMFA, but the total
width of the feature is well described. For larger B the
peak width decreases, tending to w to recover the pre-
vious result: for g�BB * w, G � G0T�z�=2, with T�z�
given by Eq. (6).

We now apply these results to the topological charge
transition in the IHM, which is defined by

HIHM � 
tR
X

i;�

�cyi�1�ci�e
i�=L � H:c:� 


1

2
�
X

i

�
1�ini


g�BB
X

i

�ni" 
 ni#� �U
X

i

ni"ni#; (10)

where ni� � cyi�ci�, ni �
P
�ni�, and N �

P
ini. We cal-

culate T�Vg� by exact diagonalization for the isolated ring
with L sites and N � L electrons, with leads attached to
two sites of the same energy ( 
 �=2) in the presence of a
magnetic flux 
 (Fig. 1), with � � 2�
=
0. The Green
functions gij�Vg� are obtained numerically and substi-
tuted in Eqs. (2) and (3). We choose L � 8, but similar
results are obtained for any L � 4n (L � 4n� 2 with
� ! �� �). The qualitative features are independent of
the lead position n, with the exception of n � L=2 where
the transmittance at � � � vanishes for symmetry rea-
sons. Because HIHM is invariant under simultaneous
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particle-hole transformation and sign change of �, we
restrict our analysis to eVg < 0. We set tR � 1 as the unit
of energy unless otherwise stated.

The topological transition is present at any value of tR.
As a basis for our study we consider a realistic ring
structure containing eight QDs with only their lowest
levels singly occupied, the centers separated by 200 nm
[5], and the parameters U;�� 1 meV and tR �U=4
(intermediate coupling strength). We first assume the
presence of a strong magnetic field (B� 1 T for a QD
array), in the plane of the ring in order not to alter the
threading flux, which destroys the Kondo effect. Figure 3
shows the first peak in G�Vg� at � � 
3 and for two
values of U. For L � 8 and � � �3, the topological
transition occurs at Uc � 4:352. The peak width is pa-
rameter dependent: for U � 5, w is approximately con-
stant with decreasing flux, whereas for U � 4, w
decreases and the peak disappears at � � 0. If U <Uc,
the ground state jg�L�i for � � 0 is even under reflection
through any site (corresponding to a BI), while for U >
Uc, it is odd (MI or SDI) [8]. For � � 0, the lowest-
076801-3
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FIG. 5. Matrix element '0 as a function of U for � � 3
(Uc � 4:352) over a range of values of the flux �.
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energy hole enters the system with the Fermi wave vector,
��=2, leaving an orbitally degenerate ground state with
L
 1 particles, jg�L
 1�i. For � � 0, this degeneracy is
broken and jg�L
 1�i is odd under reflection through any
even site if � is negative [19]. As a consequence, for U <
Uc the matrix element a0 [Eq. (5)] vanishes by symmetry,
whence G is negligible at � � 0. The flux acts as a
symmetry-breaking field, which allows one to follow
the first peak in a continuous manner until it disappears
as � ! 0.

To demonstrate that these essential features are not
affected by the presence of a Kondo resonance, we con-
sider the eight-site ring with parameters (Fig. 4) similar
to one experimental realization [5] and B normal to the
ring plane so that the threading flux and Zeeman splitting
have the same origin. Figure 4 shows the conductance in
this regime, calculated using the EAM in the SBMFA.
The disappearance of the feature with decreasing flux
remains clear.

The topological transition may now be characterized
using '0. As shown in Fig. 5 for � � 3, '0 as a function
of U (cf. peak widths in Fig. 3 [19]) vanishes discontin-
uously at Uc for � � 0, indicating unambiguously the
charge transition. The analogous result obtained for fixed
U by varying � is of direct experimental interest, be-
cause � can be controlled by a difference in gate voltage
applied between even and odd sites. A finite flux acts as a
parity-breaking perturbation and smooths the transition.
This is the situation for artificial arrays of QDs, in which
perfect structural symmetry is difficult to attain. We note
that curves for all flux values cross approximately at the
same point: transport measurements under different ap-
plied fields can therefore help to locate the transition,
even in the absence of perfect reflection symmetry. For
a small molecule, which by definition exhibits the � ! 0
limit, the only source of asymmetry is the leads.

In summary, we have considered the transport proper-
ties of a ring-shaped interacting system connected
weakly to conducting leads. The conductance is expressed
in terms of the spectral density of an EAM, which
illustrates the breaking of the Kondo effect by an applied
076801-4
field. Outside the Kondo regime we have derived a trans-
mittance formula including nontrivial interference ef-
fects. The conductance peaks may be characterized by
their total weight, offering spectral information with far
higher resolution than conventional spectroscopic mea-
surements. As an application of this result, we have dem-
onstrated that the conductance can be used to detect the
charge transition of molecules or quantum dot rings de-
scribed by the IHM. The method is relevant in the general
context of systems presenting phase transitions which
involve a symmetry change of the ground state.
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