
VOLUME 93, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S week ending
13 AUGUST 2004
Real-Time Evolution Using the Density Matrix Renormalization Group
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We describe an extension to the density matrix renormalization group method incorporating real-
time evolution. Its application to transport problems in systems out of equilibrium and frequency
dependent correlation functions is discussed and illustrated in several examples. We simulate a
scattering process in a spin chain which generates a spatially nonlocal entangled wave function.
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The density matrix renormalization group (DMRG) [1]
is perhaps the most powerful method for simulating one-
dimensional quantum lattice systems. DMRG was origi-
nally formulated as a ground state method. Later, it was
generalized to give frequency dependent spectral func-
tions [2,3]. The best spectral method, Jeckelmann’s dy-
namical DMRG [4], yields extremely accurate spectra.
However, it is limited to only one momentum and one
narrow frequency range at a time. Constructing an entire
spectrum for a reasonable grid in momentum and fre-
quency space can involve hundreds of runs.

An alternative approach to dynamics with DMRG
is via a real-time simulation. Cazalilla and Marston in-
troduced a real-time DMRG and used it to calculate the
time evolution of one-dimensional systems under an ap-
plied bias [5]. In their approach, DMRG is used only to
calculate the ground state, and the time evolution is
obtained by integrating the time-dependent Schrödinger
equation in a fixed basis. Consequently, one expects it to
lose accuracy when the wave function starts to differ
significantly from the ground state. In the systems studied
by Cazalilla and Marston, the time evolution could be
carried out for a reasonable length of time before this
happened. Luo, Xiang, and Wang [6] showed how to
construct a basis which applies to a time-evolving wave
function over a whole range of times simultaneously. This
approach was shown to be more accurate than that of
Cazalilla and Marston, but it is not very efficient —the
basis must be quite large to apply to a long interval of
time, and the whole evolution is performed at every
DMRG step.

Recently, Vidal developed a novel time-dependent
simulation method for near-neighbor one-dimensional
systems which overlaps strongly with DMRG [7].
The crucial new idea of the method is to use the
Suzuki-Trotter decomposition for a small time evolution
operator exp��i�H�. The second order Suzuki-Trotter
breakup is

e�i�H � e�i�HA=2e�i�HBe�i�HA=2; (1)

where HA contains the terms of the Hamiltonian for the
even links, andHB for the odd. The individual link terms
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exp��i�Hj� (coupling sites j and j� 1) within HA or HB

commute. Writing the wave function in matrix product
form (which underlies the DMRG block form [8]), Vidal
showed that one can apply each link term directly to the
wave function, exactly and efficiently. After each such
application, a Schmidt decomposition, equivalent to di-
agonalizing the DMRG density matrix, is performed to
return the wave function to the matrix product form. One
applies all the HA terms, and then all the HB terms, etc.

Although this method seems very efficient, a number of
aspects are novel for DMRG users, stemming from the
fact that one does not ordinarily deal with the matrix
product representation directly. Implementing this idea
into a DMRG algorithm may be time consuming and may
require a very substantial rewriting of one’s program.

In this Letter we take the key idea of the Suzuki-
Trotter decomposition, but we modify it and apply it in
a more natural way within the context of DMRG. The
result is a surprisingly simple yet very powerful modifi-
cation of the algorithm for real-time dynamics which we
believe can be incorporated into a typical program in
only a day or two of programming. We illustrate the
approach with real-time simulations which set a new
paradigm for the size and accuracy obtainable.

The standard DMRG representation of the wave func-
tion at a particular step j during a finite-system sweep is

j i �
X
l�
r

 l�j�j�1rjlij�jij�j�1ijri: (2)

Here we have a left block containing many sites (with
states l), two center sites (with states �j, �j�1), and a
right block (states r). The states l and r are formed as
eigenvectors of a density matrix, and represent a highly
truncated but extremely efficient basis for representing
the ground state, plus any other targeted states which
have been included in the density matrix. Now suppose
we have an arbitrary operator A acting only on sites j and
j� 1. This operator can be applied to j i exactly, and
reexpressed in terms of the same optimal bases, with

	A 
l�j�j�1r �
X

�0
j�

0
j�1

A�j�j�1;�0
j�

0
j�1
 l�0

j�
0
j�1r
: (3)
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FIG. 1. (a) Tunneling current through a noninteracting quan-
tum dot and a junction as defined in Eqs. (2) and (5) in Ref. [5],
respectively. The full lines correspond to exact results. (b)
Tunneling current through an interacting junction, with V �
0:5 and V � 1:1. All the DMRG results where obtained with
M � 128 and a time step � � 0:2.
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If A included terms for other sites, we could not write this
simple exact relation; new bases would need to be adapted
to describe both j i and Aj i, requiring perhaps several
finite-system sweeps through the lattice.

This implies that we can apply the link time evolution
operator exp��i�Hj� exactly on DMRG step j.
Accordingly, we adapt the Suzuki-Trotter decomposition
to match the DMRG finite-system sweeps. We decompose
the time propagator as

e�i�H � e�i�H1=2e�i�H2=2 . . . e�i�H2=2e�i�H1=2: (4)

This decomposition is good to the same order (errors of
order �3) as the usual odd/even link decomposition, and
gives a reversible time evolution. When applied 1=� times
to evolve one unit of time, the errors are �2. The main idea
is then to apply exp��i�H1=2� at DMRG step 1, then
exp��i�H2=2� at step 2, etc., forming the usual left-to-
right sweep, then reverse, applying all the reverse order
terms in the right-to-left sweep.

This procedure requires one to use the step-to-step
wave function transformation first developed to provide
a good guess for the Lanczos or Davidson diagonalization
[9]. It transforms the wave function from the basis
of step j� 1 to that of step j. Assuming this transforma-
tion is present, the real-time algorithm introduces only a
very minor modification: at step j, instead of using the
Davidson method, one evolves the transformed wave
function by applying exp��i�Hj=2�. Before the time evo-
lution starts, we typically use ordinary DMRG to find the
ground state. Next, we either (i) change the Hamiltonian,
or (ii) apply an operator to the ground state to study a new
wave function which is a combination of excited states.

As a first test case, of type (i), we study the models of
Eqs. (2) and (5) in Ref. [5] corresponding to a quantum
dot connected to two noninteracting leads, and a junction
between two Luttinger liquids, respectively, driven out of
equilibrium by a voltage bias. In these cases at t � 0 a
bias in the chemical potential is turned on as a smoothed
step function, making the new Hamiltonian time-
dependent. At each time step, the expectation value of
the current operator [defined by Eq. (4) of Ref. [5] ] is
calculated. In Fig. 1 we show the results for a chain of
length L � 64 and the same set of parameters used in
Ref. [5], keeping only m � 128 states and using a time
step � � 0:2. It should be compared to Figs. 1 and 2 in
Ref. [5] and Figs. 1 and 2 in Ref. [6]. Our results exceed
the accuracy obtained by the previous methods, with
fewer states. For the noninteracting problem, the agree-
ment with the exact results is excellent up to times t
 70.
We obtain higher accuracy for fixed m compared to
Ref. [6] because at any step we only need to target one
state at one instant of time. Note that the ground state
DMRG gives essentially exact results keeping only 
64
states, roughly half as many as the time-dependent one.
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In method (ii), we apply the operator A to the ground
state j�i at t � 0, to obtain j �t � 0�i, and evolve in time.
To calculate time-dependent correlation functions, we
time evolve both j��t�i and j �t�i, including both as
target states for the DMRG density matrix. Although
the time dependence exp��iEGt� of j��t�i is known (EG
is the ground state energy), by evolving it we keep its
representation in the current basis. In addition, we expect
some cancellation in the errors due to the Suzuki-Trotter
decomposition in constructing the correlation functions.
A typical correlation function is calculated as

h�jB�t�A�0�j�i � h��t�jBj �t�i; (5)

We use a complete half-sweep to apply A to j�i. In
particular, if A is a sum of terms Aj over a number of
sites, then we apply an Aj only when j is one of the two
central, untruncated sites. During this buildup of A at step
j we target both the ground state j�i and

Pj
j0�1 Aj0 j�i.

As an example, we consider the spin-1 Heisenberg
chain, with Hamiltonian

H �
X
j

~Sj ~Sj�1; (6)

where we have set the exchange coupling J to unity. This
system has a gap (the ‘‘Haldane gap’’) of �H � 0:4105 to
the lowest excitations, which are spin-1 magnons at mo-
mentum �, and a finite correlation length of � � 6:03
[10]. (Note that the models of Fig. 1 are gapless.) The
single-magnon dispersion relation has been calculated
with excellent accuracy [3]. However, determination of
the full magnon line is quite tedious with existing DMRG
076401-2
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methods. Here we show how to calculate the entire mag-
non spectrum with only one time-dependent DMRG run.

We take A � S��j� for a single site j in the center of a
long chain. This operator constructs a localized wave
packet consisting of all wave vectors, which then spreads
out. The different components move at different speeds,
given by the group velocity, determined as the slope of
the dispersion curve at k. In Fig. 2 we show the local
magnetization h �t�jSzj �t�i for a chain of length L �
200, with time step � � 0:1. At t � 0, the wave packet has
a finite extent, with size given by the spin-spin correlation
length �. At later times, the different speeds of the
different components give the irregular oscillations in
the center of the packet. We kept m � 150 states per
block, giving a truncation error of about 6� 10�6.

From this type of simulation we can construct the
Green’s function

G�x; t� � �ih�jT	S�x �t�S�0 �0�
j�i (7)

as G�x; t� � �ih��jtj�jS�x j �jtj�i. Here x is measured
from the site j where S� is applied. We make one mea-
surement of G�x; t� for each left-to-right DMRG step,
namely, for step x. For efficiency we measure as we evolve
in time, rather than, say, devoting every other sweep to
measurements without time evolving. This may worsen
the Suzuki-Trotter error somewhat, but we have found the
results quite satisfactory. Since G�x; t� is even in x and t,
the Fourier transform is

G�k;!� � 2
Z 1

0
dt cos!t

X
x

coskxG�x; t�: (8)

The spectral function is �1=�ImG�k;!�. We inevitably
have some cutoff in time T for the available data. The
maximum usable value of T depends on the length of the
chain: when the leading edge of the wave front hits the
ends of the chain, the data no longer describe an infinite
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FIG. 2. Time evolution of the local magnetization hSz�x�i of a
200 site spin-1 Heisenberg chain after S��100� is applied.
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chain. However, before that point the data do describe an
infinite chain with boundary effects dying off exponen-
tially from the edges. This allows us to precisely specify
the momentum k, for times t < T. To perform the time
integration we multiply G�x; t� by a windowing function
W�t� which goes smoothly to zero as t! T. We have
chosen a Gaussian, exp	�4�t=T�2
, which has the advan-
tage of having a non-negative Fourier transform, yielding
a non-negative spectral function [except for possible
terms of size exp��4�]. Note that if the true spectral
function has an isolated delta function peak, the win-
dowed spectrum will have a Gaussian peak centered
precisely at the same frequency. Thus it is possible to
locate the single-magnon line with an accuracy much
better than 1=T. If a continuum is also present nearby,
the peak is less well determined. In the case of the S � 1
chain, for k near � the peak is isolated, but at some point
near k � 0:3� the peak enters the two magnon continuum
and develops a finite width. Note that from our single
simulation we determine the spectral function for a con-
tinuum of values of k and !.

In Fig. 3 we summarize the results for the single-
magnon peak, determined automatically as the maximum
of the spectrum. To gauge the errors we present several
runs with various parameters. The values are very close;
the largest errors are due to a finite �, with the � � 0:4 run
0 0.2 0.4 0.6 0.8 1
q/π

0

2

FIG. 3. The single-magnon line of the spin-1 Heisenberg
antiferromagnetic chain. The entire spectrum is obtained
from one DMRG run, by Fourier transforming the time and
position dependent correlation function hS�l �t�S

�
0 �0�i. The

broad solid curve shows the location of the maximum in the
spectra for a particular q, in units of the Haldane gap,
0.41050(2), for a system of L � 600 sites, using a time step � �
0:02, running for T � 27:3, and keeping m � 200 states. For
comparison, results from two other runs are shown: L � 400,
� � 0:1, T � 60, and m � 150 (dashed curve); and. L � 400,
� � 0:4, T � 72, and m � 200 (dotted curve). The solid curve
peaked at q � �, shown only for the first run, is the weight A0

in this quasiparticle peak, i.e., S�!� � A0&�!�!0�.
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FIG. 4. A Gaussian magnon wave packet with momentum
k � 0:8�, Sz � 1, and half-width 16 scattering off the left end
of a 200 site spin-1 chain. The chain end states initially have
Sz � �1=2. We measure hSz�x�i at time t, and � � 0:2. In (a)
we show t � 0 and t � 20. In (b), we show the leftmost 50 sites
for a number of times. In (c), we show the whole chain for t � 0
and t � 110. After the scattering, the system is in a nonlocal
superposition of spin-flip and non-spin-flip states.
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showing some non-negligible errors. The results agree
very well with accurate frequency-based DMRG results
[3] and quantum Monte Carlo calculations [11].

With real-time dynamics, we can simulate processes
which would be very difficult to understand via frequency
dynamics. As an example, we consider a magnon wave
packet scattering off the end of a spin-1 chain, shown in
Fig. 4. The magnon is a triplet, with Sz � 1, and travels to
the left with a speed of about 2.0. The open ends of a spin-
1 chain have spin-1=2 degrees of freedom, which have
received considerable attention [10,12]. An antiferromag-
netic oscillation accompanies this state, decaying expo-
nentially with the correlation length away from the edge.
We choose the ground state with total spin Sz � �1,
making the end states each have Sz � �1=2. When the
wave packet hits the left end, it can scatter either with or
076401-4
without a spin flip occurring. If the spin flip occurs, the
end spin changes to Sz � 1=2 and the wave packet to Sz �
0. We see from the figure that after the scattering, the end
spin seems to have taken on an intermediate value of Sz,
in particular hSzi � �0:11. Meanwhile, the wave packet
seems to have a total spin of hSzi � 0:61. The intermedi-
ate values occur because we are observing a ‘‘macro-
scopic’’ quantum superposition of the state with and
without the spin flip. Specifically, the scattering is de-
scribed by the entangled state

j�1
2; 1i ! aj�1

2; 1i � bj12; 0i; (9)

where a2 � 0:61, b2 � 0:39. Note that the scattered Sz �
0 magnon does not show up when we measure Szx. A local
description of the wave function, as
��j� 1

2 i��j 12 i����j1i��j0i�, is not possible; it does not
conserve total Sz. Our measurement of Szx, h �t�jSzxj �t�i,
does not affect the state, but if one performed a real
experiment and measured the spin of, say, the magnon
after scattering one would obtain either Sz � 1 or Sz � 0.
Our results raise the possibility of using such spin chains
for experimental studies of quantum measurement and
quantum computation.
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Note added.—After submission of this work, we be-
came aware of closely related work by Daley, Kollath,
Schollwoeck, and Vidal [13].
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