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Wetting Effects at a Grain Boundary
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We consider a tier of weakened bonds along the center line of a two-dimensional Ising ferromagnet
strip as a model of a grain boundary. When an interface traverses such a strip at an angle, whether or not
there is a continuous pinning-depinning transition at subcritical temperature depends on this angle and
the degree of bond weakening. We also study the relaxation of such a system to its equilibrium state
using continuous time Monte Carlo simulation with Kawasaki dynamics; this reveals a matter transport
mechanism confined to the grain boundary.
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FIG. 1. A schematic picture of the interface induced by the
boundary conditions described in the text. The spins at the solid
horizontal boundaries are fixed to be positive and the ones at
the broken horizontal boundaries are fixed to be negative. The
dashed line depicts a mean macroscopic interface crossing the
system at an angle �, the heavy solid line shows a typical
zigzag interface configuration, where the middle section is
pinned to the grain boundary. The transition studied, the
GZZ transition, is the. crossover between these two configura-
tions. The thin solid line shows a typical microscopic zigzag
configuration. A perfect zigzag is formed when � � 0, this
corresponds to the zero temperature configuration for a system
with a grain boundary (b < 1) and is also one of the degenerate
ground states for a system without a grain boundary (b � 1).
The bond strengths of the model are included for reference,
where Kj � Jj=kBT. The circled plus (minus) sign depicts that
the bulk is on average at plus (minus) magnetization on the left
(right) hand side of the interface separating the phases.
Consider a planar Ising ferromagnet with nearest
neighbor interactions and a zero bulk magnetic field
with a strip geometry and at a temperature T below the
bulk critical value Tc. By fixing the spin values to be all
�1 on one edge and �1 on the other, configurations with
an odd number of domain walls running on average
parallel to the strip axis, which we take to be �1; 0�, are
induced; this number is effectively one as the strip length
goes to infinity, because the surface tension is strictly
positive. Thus, as the width of the strip diverges, we
have two oppositely magnetized bulk phases separated
by an interface with average orientation �1; 0�.

Suppose the bonds in the �0; 1� direction between a
single pair of adjacent rows of spins are weakened. Such
an arrangement is a simple model of a grain boundary and
forms an energetic trap for thermally fluctuating domain
walls, thus bringing in the usual energy-entropy para-
digm for phase transitions.

Two problems in this class have exact equilibrium
statistical-mechanical solutions: when the line of defect
bonds is in the middle of a strip of divergent width, the
domain wall is bound for all T < Tc [1]. If the line of
defect bonds is at the edge of the lattice, there is a
continuous phase transition at a temperature Tw < Tc,
depending on the degree of bond reduction [2]; which is
related to the wetting phenomenon as exemplified by
sessile drops [3].

This rather curious geometric dependence has been
clarified by mesoscopic modeling, depending on the
idea of coarse graining to the scale of the bulk correlation
length; this eliminates the internal structure of the equi-
librium phases, leaving just the location of the phase
separating lines which replace the interface. Clearly,
such a procedure is not unique, but an exactly derived
example is known [4]. The random walk analysis of such a
setup by Fisher [5] accentuates the geometric subtleties of
returns to the defect line, which are treated as recurrent
events. The fact that these returns occur from both sides of
the grain boundary in Fig. 1 increases the entropy of
configurations which are bound to the interface, com-
0031-9007=04=93(7)=076101(4)$22.50 
pared with one-sided returns which obtain when the grain
boundary remains at, or indeed near, the edge. This
increase is sufficient to differentiate sharply between
these cases, in the way described in the previous para-
graph. The nature of the arguments implies strongly that
the specific results from the planar Ising model are in fact
general.

In this Letter, we consider an interface which crosses
the grain boundary at an angle implemented as in Fig. 1
by fixing the spins at the edges. When b � 1 (no grain
boundary) the optimal, most likely, path is the shortest,
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geodesic one. But suppose 0< b< 1 (ferromagnetic
grain boundary); a zigzag path as in Fig. 1 allows the
interface to profit energetically from intersecting the
weakened bonds, with entropic implications; a calculation
is needed to see whether there is indeed a phase transition
as N ! 1 from the geodesic to the zigzag configuration.
A simple variational calculation [6], which is analogous
to deriving the modified Young formula for wetting [3],
suggests that when a segment of the interface is pinned at
the grain boundary, it exits from it at a definite angle,
depending on T and b, but not on �. Thus, if � is too
small, the zigzag cannot be accommodated with a posi-
tive intersection at the grain boundary; this mechanism
will suppress the phase transition. Thus, another way of
expressing the transition is that there is a critical angle
�c � �c�b;K�; this is reminiscent of filling [7]. These
intuitive ideas for a geodesic-to-zigzag (GZZ) transition
are confirmed by the calculation reported here.

Finally, the striking and unanticipated precursor film
phenomenon [8] in the dynamics of complete wetting
from an initially sessile drop has received much recent
attention [9]. There is an analogy here, in that when the
zigzag configuration obtains at equilibrium, the dynam-
ics of approach to equilibrium favors, in the main, motion
of matter (in the lattice gas interpretation) along the line
of defect bonds. This, as a generalization of what happens
at equilibrium, may be termed dynamical confinement.

Our microscopic system is constructed by considering
fixed spin or Dobrushin, boundary conditions which in-
duce an interface to cross an Ising ferromagnetic strip of
width 2N � 1 on a quadratic lattice, as shown in Fig. 1 for
orientation of axes. Coexistence of phases (as N ! 1) is
assured by imposing zero bulk field and a subcritical
temperature. We model a grain boundary in such a system
by weakening a horizontal line, symmetrically placed, of
vertical bonds. Both the incremental free energy and the
spatial dependence of magnetization will be derived.
Translational invariance, essential in our formulation, is
achieved by imposing cyclic boundary conditions, but
then it is clear that there has to be a further spin flip on
each edge. This gives a cylindrical lattice of circumfer-
ence M, height �2N � 1� with domain walls intersecting
the edges at �0; 0�; �k; 0�; �n; 2N � 1�, and �n� k; 2N � 1�.
We take M ! 1, followed by k ! 1 and then extract the
incremental free energy Fx of a single domain wall con-
necting �0; 0� to �n; 2N � 1�. The additional difficulty in
the calculation, one in mathematical physics, which has
to be overcome is to insert the line of defect bonds. Here
we give the results and focus on their physical interpre-
tation. By calculating the ratio of the partition function
for the defect strip with a domain wall to one without
such a wall, we get

e�Fx�N;n� �
1

2�

Z �

��

e�2N��!�ein!

AN�!�
d!: (1)

The Onsager function ��!� is given by [10]
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cosh��!� � c�1c2 � s�1s2 cos!; (2)

with exp2K�
j � cothKj;c�j � cosh2K�

j ;cj� cosh2Kj;s�j �
sinh2K�

j ;sj� sinh2Kj (subcriticality is determined by
K�

1 <K2). We have obtained AN�!� for all N, but here
we are interested in the limiting behavior as N ! 1, n !
1, with n � 	2N tan�
 (nearest smaller integer, say). We
calculate the free energy per unit length as

fx��; b� � lim
N!1

Fx�N; 	2N tan�
�=2N sec�; (3)

by proving that in (1) AN�!� can be replaced by A1�!�,
given in a factorized form as

A1�!� �
e�2K2s1�1� cos����e��!� � ����e��!� � ���

4 sinh�2bK1� sinh��!�
;

(4)

where

�� � wg �
������������������������������������������
w2
g � 1� 2wgc

�
1=c2

q
; (5)

with

wg � c2	c
�
1 � s�1 cosh�2bK1�
: (6)

Finally, the angle ���!� in (4) is given by the hyperbolic
triangle formula

s�1 sinh� cos�� � c2 cosh�� c�1: (7)

We can glean much information about (1)–(7) by consid-
ering some special cases: first, suppose b � 1 so there is
no pinning. Then �� � �1 and A1�!� ! e��!�e�2K2	1�
cos���!�
=2: (1) and (3) give the surface tension of an
inclined interface . The integrand in (1) has a saddle point
at !s where ��1��!s� � i tan�, implying !s � ivs, with
vs real. Considerable algebra makes this more explicit:

cosh�	ivs���
 � �c�1c2 �B1=2�cos2�= cos2�; (8)

where

B �
cos22�

cos4�
� 	�c�1�

2 � �c2�
2

cos2�

cos2�
� �c�1c2�

2: (9)

This shows that 0 � vs���< 2�K1 � K�
2� for 0 �

�<�=2, implying that to go from the contour ���;��
in (1) to the steepest descent path, no singularities are
crossed; there are ‘‘bulk’’ branch points at! � �2i�K1 �
K�

2�, ! � �2i�K1 � K�
2�. As � increases from 0 to �=2,

vs��� increases from 0 to 2�K1 � K�
2�.

A second case of interest is n ! 1, followed by N !
1. There is no saddle point and (1) is controlled by the
nearest pole, given by exp��!� � ��, for which ! �
iv�. The incremental energy per unit length in the
�1; 0� direction is v��b� which equals fx��=2; b�, as an-
ticipated; holding K1; K2 constant, v��b� increases mono-
tonically with b on 	0; 1
 with v��0� � 0 and
v��1� � 2�K1 � K�

2�. Thus v��b�< "�1; 0� where "�1; 0�
is the surface tension for a free interface with average
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direction �1; 0�. Only for b � 1 do we have v��1� �
"�1; 0�. It is tempting, and indeed correct, to assume
that the interface is bound to the defect line, in accor-
dance with Fisher’s criterion [5].

The new factor in the current problem is that for 0<
�<�=2, the simple pole of A1�!� in (4) at ! � iv��b�
can cross the steepest descent path. The intersection is at

w2
g�tan

2�� 1� � c2�2wgc
�
1 � c2� � 0; (10)

which defines the phase boundary for the ‘‘GZZ’’ tran-
sition. Inserting (6) into (10) shows that this condition is
independent of K2, which enters the discussion since we
require K�

1 <K2 as well as (10). The special case � �
�=4, K1 � K2 � K reduces to solving exp2bK � cosh2K
with sinh2K > 1; in this case, there is a bc such that, for
0< b< bc, there is no solution for K with sinh2K > 1.
Clearly vs is independent of b, so for small enough b, the
asymptotics of (1) is pole dominated. The asymptotics of
(3) is fx��; b� � ��iv� cos�� v sin� with v � v��b�
for pole domination, but v � vs��� from (8) with saddle
point domination. For fixed � the boundary has been
depicted for three cases in Fig. 2 with the corresponding
Monte Carlo (MC) simulation results.

A geometrical interpretation of this phase transition
can be obtained from the magnetization m�j; n� �
h%�j; N � n�i, derived as a generalization of the original
interface profile calculation [12] to include the grain
boundary. When the parameters are such that the thermo-
dynamics in the preceding paragraph is described by the
saddle point, the inclined interface result is recaptured
[11]; thus the grain boundary is ignored. In the pole
dominated case, after quite some analysis, the result is
FIG. 2. Lines depict the phase diagram of the ‘‘GZZ’’ tran-
sition for three different angles calculated from the exact result
(10). Phase transition points defined by MC simulation for these
angles are plotted for b � 0:95; 0:9; 0:85. We used N-fold im-
plementation of the Wang-Landau sampling [16] and defined
the transition point from susceptibility peaks. System sizes
used were 63� 14 �� � 75:97��, 47� 46 �� � 41:64��, and
23� 78 �� � 10:31��. The error bars are the standard devia-
tions over ten realizations. Finite size effects change the phase
diagram obtained from MC simulations showing that the
transition temperature is lowered; see, for example, [17].
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m�j; n� � m� �
m�e�N�n���iv���jv�

2�

�
Z �

��

e�ij!��N�n���!�f�!�d!

ei!e�v� � 1
: (11)

The function f�!� will not be specified, since it will only
be needed at the saddle point in the steepest decent
analysis of (11). This saddle point is given by ! � �ivs
with ��1��ivs� � j=�N � n�. The leading behavior in (11)
is got by linear approximation to the denominator and
usual quadratic one in the ��!� expansion, with the result
that the integral is approximated by

e�N�n�	��iv�����ivs�
f�ivs�
ej�v��vs�

2�

Z 1

�1

e�x2dx
u� ix

; (12)

where

u � 	1� e��vs�v��


�
�N � n���2��ivs�

2

�
1=2

: (13)

Recall that vs here is determined by j and �N � n� and
that (12) is related to the error function [13]. The most
interesting case is when vs � v� � O�1=

��������������
N � n

p
�; this

implies that

m�j; n� �
2m�����
�

p
Z u

0
e�x2dx; (14)

where

u� �j� j0�=	2�N � n���2��iv��

1=2; (15)

with ��1��iv�� � j0=�N � n�. Thus we have Gaussian
fluctuations of the interface beginning at the origin about
the mean angle � (see Fig. 1) with tan� � j0=�N � n�
which is thus given in terms of b and the Kj but which
is independent of �. The ��2��iv�� term in (15) brings in
the surface stiffness as a control parameter for the capil-
lary fluctuations of the interface [14].

As mentioned above, Fig. 2 displays some fits to our
exact equilibrium results of MC simulations; these dem-
onstrate that finite size effects have been handled properly
and are used as a reference to ensure that our simulations
with the continuous time MC algorithm and Kawasaki
dynamics [15] approach the correct equilibrium. A very
interesting question is how the matter is transported in
thermalizing from the T � 0 configuration as an initial
configuration (interface in a zigzag configuration with
� � 0 in Fig. 1) to equilibrium at T > 0. The standard
chemical physical idea is that the most important paths
are those involving least excitation energy. What we show
here is that matter flows along the grain boundary, by
creating spin flip pairs aligned on �0; 1�, which dissociate
and then diffuse freely along either side of the boundary,
except for occasional trapping or collision. They are then
absorbed in the corners formed by the junctions of the
vertical interface sections and the interface section
076101-3
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pinned at the grain boundary, promoting relaxation to the
equilibrium wedge angle.

We considered two systems, one with �b � 0:85� and
one without �b � 1� a grain boundary. As depicted in
Fig. 1, we fix spins on the upper and lower boundaries
to force an interface in the system; furthermore an anti-
periodic boundary condition is used in the �1; 0� direction
to remove the extra interface. In order for the system to
reach equilibrium, matter must to be transported through
the system. The main interest of the matter transfer
mechanism is the movement in the �1; 0� direction.
Accordingly, we define the total mass transfer for each
row of spins as

S b
j �tmc� � Sb

j �tmc � 1� �
X
i

f�%i;j; %i�1;j�%i�1;j; (16)

where f � 1 if the spin pair %i;j; %i�1;j is flipped, other-
wise f � 0, tmc is the number of MC steps, and b the bond
weakening in the middle. We studied a system with M�
139;2N�2�34;��75:97�, and t�Tc�T=Tc�0:65.
The system with the grain boundary will relax to a zigzag
configuration since the field b < bc � 0:91 [calculated
from (10)] for the given parameters.

After the simulation has equilibriated, we calculate
the normalized average total mass transfer Ib

j �

hSb
j i=

P
jhS

b
j i formed over 450 MC realizations. Looking

at these fractions for the b � 1 case, we find that the
middle two rows contribute less than quarter of the total,
i.e., I1

17�I1
18�0:23, the next ones I1

16 � I1
19 � 0:14,

I1
15 � I1

20 � 0:09, I1
14 � I1

21 � 0:06, and all the rest
�0:02 each (this is diffusion through the bulk phase).
Consider now the system with a grain boundary (b �
0:85). The two middle rows, i.e., the grain boundary,
contribute more than two thirds of the total, I0:85

17 �
I0:85
18 � 0:68 and rest of the rows each contribute �0:02.

Comparing these fractions leads to the following conclu-
sions. While the system without a grain boundary equili-
brates using capillary fluctuations, the case with the grain
boundary will relax using an alternative, and novel,
mechanism; the section of the interface pinned to the
grain boundary will act as a diffusive guide for the
particles. It is also important to notice that in the case
b � 1 the amount of total mass needed to transfer before
the system reaches equilibrium is greaterP

jhS
1
j i=

P
jhS

0:85
j i � 1:47, but still �hS1

17i � hS1
18i�=

�hS0:85
17 i � hS0:85

18 i� � 0:51, meaning that the absolute
number of particles using the middle two rows is doubled
when the grain boundary is introduced. This means that
by introducing a defect line in the system one spatially
confines the bulk of the mass transport to the minimum
energy pathway.

In summary, we have shown that, with inclined cross-
ing of the grain boundary, depending on the degree of
bond deficiency and angle, there are three possible sce-
narios. First, the interface can stay pinned for all T < Tc;
076101-4
second, there is a continuous pinning-depinning transi-
tion as described in this Letter; and third, there is no
pinning at all. This is the extension of the Fisher scenario
for the interior grain boundary [5]. Finally, our matter
conserving MC analysis of the transport of matter in this
system indicates that most of this takes place along the
grain boundary in relaxation processes, prompting us to
term this dynamical confinement.
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171 (1996).
[5] M. E. Fisher, J. Stat. Phys. 34, 667 (1984).
[6] D. B. Abraham, A. O. Parry, and A. J. Wood, Europhys.

Lett. 60, 106 (2002).
[7] A. O. Parry, C. Rascón, and A. J. Wood, Phys. Rev. Lett.

83, 5535 (1999); A. O. Parry, A. J. Wood, E. Carlon, and
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