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We obtain a general result for the Lamb shift of excited states of multilevel atoms in inhomogeneous
electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We
find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared
to the case of vacuum. We also suggest that the position-dependent Lamb shift should extend from a
single level to a miniband for an assembly of atoms with random distribution in space, similar to the
velocity-dependent Doppler effect in atomic/molecular gases.
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Since the pioneering experiment performed by Lamb
and Retherford [1] in 1947 and the subsequent theoretical
analysis developed by Bethe [2], the study of the Lamb
shift plays a unique role in quantum electrodynamics
(QED) because it provides an excellent test of the QED
theory by comparing its predictions with experimental
observations [3,4]. Recently, many efforts have been de-
voted to the study of various physical effects associated
with the Lamb shift [5–7].

Photonic crystals (PCs) are a new type of optical
material with a periodic dielectric structure [8]. They
can pronouncedly modify the photonic density of state
(DOS) and local DOS leading to novel quantum-optics
phenomena [9] such as inhibition [10] and coherent con-
trol [11] of spontaneous emission, enhanced quantum
interference effects [12], non-Markovian effects [13,14],
wide lifetime distribution [15], nonclassic decay [16],
slope discontinuities in the power spectra [17], etc.

Strong suppression or enhancement of light emission
by the PC environment is expected to modify the Lamb
shift. However, very different predictions for the Lamb
shift can be found in literature. The isotropic dispersion
model [18] predicts an anomalous Lamb shift and level
splitting for multilevel atoms. For two-level atoms, the
anisotropic model [19] suggests that the Lamb shift
should be much smaller than that in vacuum, while the
pseudogap model [20] predicts a change of the Lamb shift
of the order of 15% compared to its vacuum value. At last,
a direct extension of the Lamb shift formulism for multi-
level atoms in vacuum to the case of PCs suggests that the
Lamb shift differs negligibly from its vacuum value [21].

Motivated by previous controversial results, in this
Letter we employ the Green’s function formalism of the
evolution operator to obtain a general result for the Lamb
shift in PCs. We reveal that in an inhomogeneous electro-
magnetic environment the dominant contribution to the
Lamb shift comes from emission of real photons, while
the contribution from emission and reabsorption of vir-
tual photons is negligible, in vast contrast with the case of
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free space where the virtual photon processes play a key
role. The properties of the Lamb shift near the band gap
are calculated numerically for an inverse-opal PC. We
find that the PC structure can lead to a giant Lamb shift,
and the Lamb shift is sensitive to both the position of an
atom in PCs and the transition frequency of the related
excited level.

We study the Lamb shift in PCs in the framework of
nonrelativistic quantum theory. For a multilevel atom
located at the position r in a perfect 3D PC without
defects, the Hamiltonian of the system can be presented
in the form H � H0 �Hint �Hct, where the term H0

stands for noninteracting Hamiltonian and the term Hint

describes interaction between an atom and photons, and

H0 �Hint �
p2

2m
� Va � 
h

X
nk

!nka�nkank �
e
m
p �A�r�;

(1)

with A�r� �
P
nk� 
h=2"0!nk�

1=2�En�k; r�ank � H:c:�
being the quantized vector potential, the second-order
term of the vector potential in Eq. (1) has been neglected,
and Hct � �
m=m�p2=2m is a mass-renormalization
counterterm for an electron of observable mass
m [18,22]. The electromagnetic (EM) eigenmodes
f!nk;Enk�r�g in PCs can be found by the plane-wave
expansion method [23].

We assume that an atom is excited initially, and it
stays at the lth energy level without a photon in the EM
field, and denote jIi � jl; 0i and jFjnki � jj; 1nki (i.e., the
atom is at the level j and the EM field has a photon in the
state nk) as the initial and final states of the system,
respectively. The state vector of the system evolves
according to the equation, j��t�i � U�t�jIi � Ci�t�jIi �P
j;nkC

j
nk�t�jF

j
nki, with the initial conditions Ci�0� � 1

and Cnk�0� � 0, where U�t� is the evolution operator.
Applying the Green’s function technique to the evolution
operator, we obtain the Fourier transform Ci�!� of Ci�t�
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in the form [24]
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ii �!� 
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ii �!��; (2)

with G�
ii �!� � lim�!0�hIjG�z � !� i��jIi, where G�z�

is defined by the operator identity G�z��z
H= 
h� � 1.
Projecting this operator identity onto the one-photon
Hilbert space [25] and noting that the nonvanishing ma-
trix elements of Hint are hFjnkjHintjIi, we obtain the fol-
lowing analytic expression:
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Here Vpc is the PC volume, !rel � mc2= 
h is the relativ-
istic limit of the photon energy [2], �lj �
e2jpljj2=3�m2#0 
hc

3 is the relative linewidth of the
atomic radiation from the l state to the j state in vacuum,
and P stands for the principal value of the integral. In
Eqs. (4) and (5), we have considered a random orientation
of plj and included the mass-renormalization contribu-
tion, respectively [18–22]. The function g�r; !� is the
local spectral response function (LSRF) proportional to
the photon local DOS.

Equations (2) and (3) show that the radiative correction
to the bound level l is determined by the expression

�!
!l� �
X
j

�lj
2�

�!
!j���r; !
!j�: (6)

In the two dispersion models, jEnk�r�j2 � 1=Vpc, then
Eq. (6) just gives the results described by Eq. (6a) of
Ref. [18] provided we take l � 1. For a two-level atom
with j � 0; 1, we note that �11 � 0 due to p11 � 0 [plj �
i�!l 
!j�mrlj], and Eq. (6) can be simplified to Eq. (4.9)
of Ref. [20] by setting l � 1 and !0 as the zero point of
energy. In vacuum, g�r; !0� � !0 and by setting ! � !l
on the right-hand side of Eq. (6), we obtain

�0
l �

e2

6�2m2#0 
hc
3

X
j

�
!jl�jpljj2��r;
!jl�; (7)

where !jl � !j 
!l and ��r;
!jl� � 
 ln�!rel=
!jl � 1� � 
 ln�!rel=!jl�. Because ��r;
!jl� is a
slowly varying function of !jl, it is reasonable to make
the approximation, !jl � 
!
!l, for ��r;
!jl� (see
also Ref. [22]), with 
!� !l being a weighted average
of f!jg. This approach implies that the dominant contri-
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butions to the Lamb shift come from the emission and
reabsorption of virtual photons (corresponding to the
transition processes from the l level to higher levels),
rather than that of real photons (corresponding to tran-
sition processes from the l level to lower levels). Noticing
that

P
j!jljpljj2 � 
he2j l�0�j2=2"0, where  l�0� is the

wave function value at the center of an atom in the state
jli, we finally obtain a standard nonrelativistic result,

�0
l �

e4j l�0�j
2

12�2m2"20c
3 ln

!rel


!
!l
: (8)

Thus, Eq. (6) gives a general result for a nonrelativistic
radiative correction to a bound level of a multilevel atom
in an inhomogeneous EM system.

We solve Eq. (6) numerically for an actual PC struc-
ture. For calculating the function g�r; !0�, we employ an
efficient numerical method recently developed in
Ref. [26]. For calculating ��r; !
!j�, we make a rea-
sonable approximation following Refs. [21,27]: The dis-
persion function g�r; !0� of a PC vanishes jumpwise at a
certain higher optical frequency !op, i.e., for !0 >!op,
and the PC medium is approximately treated as free space
with "�r� � 1. We choose !op in such a way that our
results are verified to be insensitive to perturbations.
!opa=2�c ’ 3:5 is chosen in our calculations.
Furthermore, we distinguish two different types of inte-
grals for ��r; !
!j�: the principal integral, when the
integrand in Eq. (5) has a singularity, and the normal
integral, otherwise. With this in hand, we find that the
terms for j < l and for j > l on the right-hand side of
Eq. (6) contribute the principal and normal integrals near
!l, respectively. In order to show this clearly, we assume
that ! � 
�!l is a solution of Eq. (6), and j
j �
!l�1 
!l, where !l�1 is closest to and higher than the
frequency of the level l. For j < l, the integrand has a
singularity due to 
�!l 
!j � 0. But for j > l, the
integrand has no singularity due to 
�!l 
!j < 0.

In PCs, the LSRF g�r; !0� displays dramatic fluctua-
tions when the frequency !0 varies for a given position.
As an example, we demonstrate this in Fig. 1 for a 3D
inverse-opal PC [28] without stacking faults [29]. Thus,
the principal integral ��r; !� �!> 0� should be very
sensitive to the value of !, and the contribution to the
integral comes mainly from the region near the frequency
!. Figure 2 shows that ��r; !� is an oscillatory function
of!. However, for the normal integral ��r;
!� �!> 0�,
the fluctuations in g�r; !0� are smoothed out after inte-
gration, and ��r;
!� is a slowly varying function of !,
similar to the case of vacuum. In Fig. 3, we find the
confirmation of this behavior of the function ��r;
!�.
Furthermore, it can be seen that in a PC the function
��r;
!� tends to the limit value of that in vacuum as the
frequency! grows. Therefore, the terms with j > l on the
right-hand side of Eq. (6) can be treated similar to the
case of vacuum. If we consider 
!
!l � 1, then the PCs
do not bring about appreciable changes in those terms
073901-2
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FIG. 1 (color online). Local spectral response function
g�r; !� for an atom placed at three different positions: r1 �
�0; 0; 0�a, r2 � �0:34; 0; 0�a, and r3 � �0:24; 0:24; 0�a in the
inverse-opal photonic crystal created by air spheres in a me-
dium with n � 3:6 and f � 0:74; a is the lattice spacing.
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with j > l compared to the case of vacuum. Therefore,
Eq. (6) can be approximated as follows:

!
!l
�0
l ’

X
j<l

�lj�!
!j�

2�
P
Z !op

0

g�r;!0�
!0

�!
!j
!0�!0
d!0:

(9)

Equation (9) shows that, compared to the case of vacuum,
inhomogeneous EM systems lead to an additional contri-
bution to the Lamb shift that comes mainly from the real
photon processes, rather than the virtual photon pro-
cesses, in contrast to the case of vacuum.

We now apply our result (9) to study the Lamb shift for
a hydrogen atom in the inverse-opal PC. First, we obtain
an interesting result that the PCs environment has no
effect on the 2s state due to �2s1s � 0; this result coin-
cides with the prediction obtained earlier from the iso-
tropic dispersion model [18]. However, for the 2p state,
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FIG. 2 (color online). Principal integral ��r; !� for three
different atomic positions in the photonic crystal. All parame-
ters are the same as in Fig. 1. The dashed line corresponds to
the case of vacuum.
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we have �0
2p � 0 and �2p1s ’ 4� 10
7. Numerical re-

sults for the Lamb shift of the 2p state are presented in
Fig. 4. We find no level splitting, which differs from the
prediction of the isotropic model [18]. In addition, the
Lamb shift depends strongly on not only the transition
frequency but also on the atomic space position, different
from dispersion models [18–20]. The similar properties
can also be found for the 3s, 3p, and 3d states.

Analyzing the results presented in Fig. 4, we notice that
the Lamb shift can take very large positive or negative
values and, therefore, it can be termed as a giant Lamb
shift. Comparing the results for the PC with those for
vacuum, we find that the Lamb shift may be enhanced in
the PC by 1 or 2 orders of magnitude. Furthermore, it is
significant to point out that the giant Lamb shift may
occur for the transition frequency being either near or far
away from the photonic band gap. The above-mentioned
results are in contrast to the predictions based on dra-
matically simplified models [18–21]. In Ref. [21], a pho-
tonic band gap structure was simply treated as an
averaged homogenous medium. This smooths out the
contribution to the Lamb shift from real photon processes
that play a key role in inhomogeneous systems. In the
isotropic model [18], g�r; !� � �!
!c�


1=2=!, which
gives an infinite interaction between atom and photons
at the band edge ! � !c, leading to the level splitting
and anomalous Lamb shift. In the anisotropic model [19],
g�r; !� � �!
!c�

1=2=!, which leads to coupling inter-
action near the band edge being smaller than that in
vacuum where g�r; !� � !; it predicts a much smaller
Lamb shift than that in vacuum. In the pseudogap model
[20], g�r; !� �!f1
 h exp��!
!c�

2=(2�g, which gives
rise to a small value of the Lamb shift near a pseudogap.
Clearly, these models lose the main physical character-
istics of the LSRF g�r; !� in realistic PCs that may result
in the giant Lamb shift and other significant effects.

Based upon the position-dependent Lamb shift, we can
suggest a possible experimental approach for verifying
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FIG. 3 (color online). Normal integral ��r;
!� for three
different positions in the photonic crystal. All parameters are
the same as in Fig. 1. The dashed line corresponds to the case of
vacuum.
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our theoretical predictions: If an assembly of atoms
spreads randomly in PCs, the atoms at different positions
have different values of the Lamb shift. Then the l-state
levels of many atoms should form an l-state miniband,
similar to the velocity-dependent Doppler effect in
atomic/molecular gases. This miniband should be experi-
mentally observable through the emission spectrum of
these atoms.

In conclusion, we have developed a general formalism
for calculating the Lamb shift for multilevel atoms, and
revealed that the real photon processes play a key pole in
inhomogeneous dielectric structures. Our numerical re-
sults for atomic hydrogen in a 3D inverse-opal PC show
that the Lamb shift may be enhanced remarkably by the
PC environment. We have also suggested the existence of
the Lamb shift miniband for an assembly of atoms open-
ing up possible ways for experimental observations. We
believe our results provide a deeper insight into the theory
of spontaneous emission in PCs and many applications
such as the development of thresholdless lasers.
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