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The existence of states for which molecular alignment can be maintained for long periods of time is
shown. These states, consisting of coherent superpositions of rotational states, are found among cyclic
states of the generalized Floquet operator corresponding to a molecule in a short nonresonant laser
pulse. For a single pulse alignment can be maintained, in some cases, for more than 40 times the pulse
duration. Because of the special properties of these coherent states, arbitrarily long alignment can be

achieved by using well-timed pulse trains.
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In the recent past there has been an increasing interest
in the theoretical and experimental study of molecular
orientation and alignment (for a review, see [1]). Among
the many techniques proposed so far the most promising
are those based on the interaction between a pulsed non-
resonant laser field and molecular polarizability. These
techniques can produce field-free alignment, as the mole-
cules may end up, after the pulse is over and for non-
adiabatic interactions, in a coherent superposition of
rotational states. These superpositions give rise to further
recurrences in the alignment [2]. Leibscher et al [3] have
shown that there is a limit for the degree of alignment
that can be obtained with a single laser pulse. These
authors have used optimal control theory to design laser
fields which allow to overcome this limit, and showed
that optimized trains of laser pulses provide robust align-
ment. A related scheme [4] suggests that narrow angular
distributions can be achieved by increasing the number of
tailored short pulses. Orientation is more difficult to
obtain than alignment, since a symmetry-breaking
mechanism is required. Dion et al [5] have tailored laser
pulses that optimize orientation by using genetic algo-
rithms. They also suggested that trains of kicks can
enhance orientation. In the present Letter I show the
existence of rotational wave packets that, when subject
to a single short nonresonant laser pulse retain a large
degree of alignment up to more than 40 times the pulse
duration. Because of the special characteristics of these
states the alignment can be maintained as long as desired
by using a sequence of identical pulses.

The localization properties of wave packets are usually
destroyed during their time evolution. An initial quasi-
classical evolution is rapidly followed by collapses and
revivals [6]. However, it is well known for several time-
periodic systems as, for example, Rydberg states of atoms
in polarized microwave fields, that nondispersive wave
packets exist [7], and are given by localized Floquet
eigenstates. As stated by Buchleitner et al [6], the exis-
tence of such wave packets is not obvious due to the
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complexity of the Floquet spectrum. The discovery of
nonspreading wave packets for atoms subject to periodic
external perturbations has been based in the investigation
of the corresponding classical analog. Also, it has been
suggested that nonspreading states can exist for diatomic
molecules with permanent dipole moment in circularly
polarized electric fields [8]. Kim et al. gave an approxi-
mate expression for these wave packets and discussed a
method for its generation and control.

A rotating molecule subject to a linearly polarized
laser pulse is a nonperiodic system. Aligned states are
given by rotational wave packets strongly localized at 6 =~
0 and 6 = 7, where 6 is the polar angle between the
direction of the electric field and the molecular axis. If
nondispersive wave packets exist for a nonperiodic system
they must be localized eigenstates of the Schrodinger
operator S(¢t) = H(r) — iha/dr [9], as explained below.
Thus, it is natural to ask if some laser pulse can give
rise to states for which the alignment is well conserved
during the pulse duration.

Shirley [10], by using Floquet theory, showed how to
describe the time-dependent interaction of a two-level
quantum system with a periodic electromagnetic field as
a time-independent problem. Sambe [11] introduced, for
time-periodic systems, the use of a Floquet operator in an
extended Hilbert space in which time is treated as another
spatial coordinate. This space is formed by the composi-
tion of the Hilbert space corresponding to the spatial
zeroth-order Hamiltonian and the space formed by all
possible periodic functions of time with finite norm.
Seleznyova [9] showed that for a quantum mechanical
system under a nonadiabatic external perturbation in a
time interval [0, T] all the cyclic states of the system, i.e.,
those for which (T) = ¢ y(0), are determined by the
eigenvalues (€) and eigenvectors (¢,) of the Schrodinger
operator S(¢) acting in the extended Hilbert space. Also,
she established a connection between the cyclic states of a
system in [0, T] and the quasienergy states of a T-periodic
system related to it. Thus, a cyclic state for an arbitrary
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system, for which not necessarily H(0) = H(T) (which
suggests the possibility of extending the present study to
nonsymmetric laser pulses), can be written [9] as
li(r)) = exp(—iet/h)|p (1)), where €= —8hi/T and
¢(T) = ¢.(0).

The (z, ) method of Peskin and Moiseyev [12] also
considers time as an extra coordinate, . The solution of
the time-dependent Schrédinger equation can be formally
written as

Jx, ) = y(x, ¢, 0l,—,, (1)

where
Plx, ', 1) = exp[(—i/B)S(H)(t — 1) Ip(x, 7', 1p). (2

Solutions to the time-dependent Schrodinger equation
can be obtained, in this formalism, by using methods
developed for time-independent problems, since the
Schrodinger operator S(¢') is time independent. Peskin
and Moiseyev assumed box normalization for 7 (0 =< ¢/ =
T) and also explained how to use periodic boundary
conditions by artificially introducing periodicity in a
parameter of the Hamiltonian. In the case of a molecule
interacting with a single pulse, this is equivalent to con-
sider that the pulse is repeated periodically with period 7,
which is fully justified for high-frequency lasers. In the
(¢, ¢') formalism a generic wave function can be written as
an expansion in the basis set of generalized Floquet
eigenstates. The time dependence of the wave function
is encoded in phase terms and in the basis functions as
well. Thus, a wave function that obeys S(r)i(z) = 0, can
be expanded as [9,13]

() = 3 expl—ie;(t = 10)/Hllbe, (DD 19, 3)

where <(¢Ej|¢>) is the inner product in the extended

Hilbert space. By taking advantage of the periodicity of
the eigenvalues and eigenvectors of S(¢) the expansion can
be limited to the Floquet states that belong to the first
Brillouin zone (¢; € [—#/T, w/T]) [9,13]:

(1) = D expl—ie; (t — 1)/l b, (DX be, (10)|¢(10)),
I
“4)

where the inner product has been taken in the Hilbert
space of the zeroth-order spatial Hamiltonian.

The Hamiltonian for a linear molecule in a high-
frequency nonresonant linearly polarized laser field for
an isolated vibronic state, after averaging the square of
the electric field over the period of the pulse, is [2]

1
H(t) = BJ? — ZE(Z)g(t)[(a —aj)cos’d+a;l], (5
where B is the rotational constant, J is the angular mo-

mentum operator, | and « | are the components of the
static polarizability, parallel and perpendicular to the
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molecular axis, and Ej) is the strength of the electric field.
The time profile, g(z), can be chosen to be a Gaussian
centered at t = 0, exp(—#?/c?), characterized by a full-
width at half maximum 7 = (5/3) o (the pulse duration).
The eigenstates (cyclic states) of the Schrodinger opera-
tor in dimensionless form, S(¢)= H()/B —
(in/B)a/or, can be expanded in a basis set of field-free
rotational eigenstates |J, M) (M is the projection of J
along the direction of the external field) times a Fourier
basis set for the time coordinate |n)= (1/+/T)X
exp(2mint’/T), where T is the period chosen for the

external field. The eigenstates of S(¢') depend on dimen-
sionless interaction parameters | = Eja/(4B) and
w) = Eja ) /(4B). Because of the dimensionless form
of S(¢'), i/B is a reduced unit of time and B/ is a
reduced unit of frequency [2].

The matrix elements needed to build a matrix repre-

sentation of §(t’ ) (valid for T > o) are

N o7 —72o*(n' — n)?
(nlexp(—2/a?)|n'y = T exp[ ™ }
(6)

and

0 27n’
(al = i |n'y = =77

O~ 7
" T )

When the initial wave function, |A(f = 1,)), is a cyclic
state only one generalized Floquet state contributes to the
summation in Eq. (4) since <¢Ej(t)|d>ej,(t)> = §,;; for any
t€[0,T]

A rotational wave packet given by the projection onto
the spatial Hilbert space of a cyclic state at #,, |A) =
> inCmlDIn), evolves at time T to

U(T, 1o)|Mt9)) = exp[—ie,(T — o) B/ R c}(t0)lJ),
J

®)

where c(ty) = >, c;, exp(2minty ), and €, is the eigen-
value corresponding to |A). Therefore, global quasiadia-
batic behavior can be obtained for processes that locally
are highly nonadiabatic. Adiabatic behavior is usually
spoiled if the system traverses, during its time evolution,
avoided crossings between eigenstates of the instanta-
neous Hamiltonian [14].

Selected cyclic states that give rise to large alignment
can be created by using tailored microwave pulses that
guide the molecule from a field-free eigenstate. Judson et
al. [15] discussed how to design microwave pulses to
create superpositions of rotational eigenstates with a
high degree of orientation for diatomic molecules. The
characteristics of pulses capable of creating coherent
states for asymmetric-top molecules were studied in
[16]. Other feasible ways to create these rotational wave
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packets should be investigated as, for example, ultrafast
pulse shaping in the weak-field regime [17]. If the prepa-
ration step fails to produce the selected state the system
will end up in a superposition of cyclic states with un-
known alignment properties. However, Seleznyova [9]
showed that for specific values of T some linear combi-
nations remain cyclic.

The initial alignment can change during the pulse but
it is recovered at time 7, because the wave packet evolves,
at the end of each pulse, to the initial state multiplied by a
phase. However, the time evolution of the field-free ei-
genstates that compose the initial wave function is highly
nonadiabatic both locally and globally for pulses with
o = /B [2]. This behavior is illustrated in Fig. 1, which
shows the time evolution for a molecule in an electric
field composed by a sequence of three identical pulses.
The time evolution was calculated using the quasienergy
states resulting of diagonalizing the (z, ) Hamiltonian
matrix. The basis set was formed by 16 field-free rota-
tional eigenstates (J from zero to 30) and 161 Fourier time
basis set (n = —80, ...80), which amounts to a modest
matrix of 2576 X 2576. The initial alignment is recov-
ered at the end of each pulse for the cyclic state shown in
Fig. 1 (corresponding to the eigenvalue € = 23.92). On
the other hand, the evolution is strongly nonadiabatic for
initial wave functions corresponding to field-free rota-
tional eigenstates. At the end of the second pulse maxi-
mum alignment corresponds to |J = 0), but after the
third pulse it corresponds to |J = 4). This behavior illus-
trates an interesting situation in which the individual
field-free eigenstates that compose a given cyclic state
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FIG. 1. Alignment {cos?#), for a cyclic state and six eigen-

states of the rotational Hamiltonian, as a function of time (in
dimensionless units). The electric field, represented in arbitrary
units by the dotted line, is given by a sequence of three
identical Gaussian pulses. For each pulse o = 0.01, T = 0.1,
w) =300, and w,; = 0. The initial cyclic state, at time ¢ =
—0.05, is given in terms of |J) states by A(f,) = 0.51|0) +
0.74]2) + 0.38]4) + 0.17|6) + 0.11]8). Also the time evolution
is shown for initial states corresponding to eigenstates of
Floquet operators with T = 0.11 [A,(¢,) = 0.48|0) + 0.71]2) +
0.31]4) + 0.18]6) + 0.21|8) — 0.13|10) — 0.19]14) — 0.15]18)]
and T = 0.12 [A,(zy) = 0.51|0) + 0.62]|2) + 0.57|4) — 0.16]8)].
Only |J) basis functions with coefficients greater than 0.1 (in
absolute value) are given.
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evolve in a nonadiabatic fashion but the composite state
evolves quasiadiabatically. Figure 1 also shows the time
evolution of the alignment for initial states given by
cyclic states of Floquet operators with slightly different
T values. These states are not eigenstates of the Floquet
operator corresponding to the system with 7 = 0.1 and
therefore are noncyclic states for it. However, their time
evolution illustrates the robustness of the method as large
alignment is maintained for these contaminated states.
Therefore, it is expected that slight deviations from the
ideal case in the preparation step will still give rise to
states with sustained alignment.

Only some cyclic states will give rise to sustained
alignment during a pulse. Figure 2 shows alignment for
pulses with different o and w) values. In all cases the
period taken was T = 100. For laser pulses with o <
/B the degree of misalignment during each pulse of the
pulse train is very small as shown in the left panel of
Fig. 2. This figure shows the evolution of the alignment
under a sequence of three identical pulses with o =
0.005. For a molecule with B = 1 cm™! this corresponds
to a pulse duration of approximately 44 fs. For molecules
with smaller rotational constants longer pulses can be
used to obtain the same result. The smallest oscillations
in alignment with respect to the maximum value corre-
sponds, in Fig. 2, to the weakest pulse train. However, the
stronger the pulse train the larger the alignment. This
implies that a compromise can be found between maxi-
mum alignment and minimum misalignment. On the
other hand, for a single pulse with longer duration (right
panel of Fig. 2), the alignment oscillates considerably for
)| = 250 and 125, but for the strongest pulse (v = 375)
the oscillations are greatly reduced. These two plots illus-
trate the rich behavior that can be expected for cyclic
states.

Figure 3 shows the time evolution of the alignment for
several cyclic states of systems with the same o but
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TTT00 0.1 02 03 02 0.1 00 0.1 02 03
t (h/2xB) t (h/2zB)

FIG. 2. Alignment, {cos’#), versus time for a sequence of
three identical Gaussian pulses with o = 0.005 and T = 0.05
(left panel), and a single pulse with ¢ = 0.05 and T = 0.5
(right panel). Three values of w [375(s), 250(m), and 125(w)]
were taken for each . The cyclic states shown correspond to
the following eigenvalues of the (z,#/) matrix: —50.98(s),
—31.94(m), and —13.80(w) (left); and —4.87(s), —4.08(m),
and —3.31(w) (right).
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FIG. 3. Alignment, {cos26), as a function of time, for a single

pulse, centered at t =0, with o = 0.005 and w; = 375 for
initial wave packets corresponding to cyclic states of (z, 1)
Hamiltonians for four values of T (100, 200, 600, and
1000). Notice that for the four curves the evolution from ¢ =
0.025 until #5,,, = 0.25 corresponds to effective field-free con-
ditions.

different T values. The evolution between —7/2 and T/2
is given by Eq. (4) and for T/2 < = tg,, has been
calculated by field-free propagation. The wave packet
for the system with the smallest period (T = 100) gives
maximum alignment during the pulse, but the misalign-
ment under field-free conditions (after the time for which
the pulse has effectively died, t = So, for realistic fields)
is very fast. Since T = 600 corresponds to a case for
which the molecule is evolving under field-free condi-
tions for —300 =t = —50 and for 50 =t = 300, a
compromise can be found between maximum alignment
during the pulse and long-lasting alignment under field-
free conditions. On the other hand, for an initial state

corresponding to a cyclic state of §(¢) with T = 1000 the
alignment changes more strongly during the pulse. The
scheme is really flexible since for the same set of physical
parameters B, o, and o different values of the period T
give rise to generalized Floquet eigenstates with different
alignment properties due to the fact that they consist of
different combinations of rotational states. It should be
realized, when designing an experiment, that the parame-
ter T controls the time delay between pulses.

Two additional conclusions follow from Figs. 1 and 3:
(1) if the alignment is substantially conserved for a single
pulse during the chosen period, T, a sequence of periodic
pulses, Y, exp[—(t —1,)*/0?], where t,=nT, n=
0,1,2,... will maintain large alignment until ¢ =
(n + 1)T, and (ii) for a single pulse, aligned initial states
corresponding to a (¢, ') Hamiltonian with T large com-
pared to o give rise to field-free alignment during a time
approximately equal to 7/2 — 5o For the case T = 600,
shown in Fig. 3, this corresponds to 15 times the pulse
duration.

Summarizing, a new type of states has been found for
which a large degree of alignment can be maintained
during a single nonresonant laser pulse and a periodic
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sequence of identical pulses, suggesting a novel strategy
for controlling molecular rotation. Investigation of ‘“‘non-
spreading” cyclic states should be extended to other sys-
tems such as asymmetric tops, for which the (¢, #') matrix
is much larger; molecules in an infrared continuous-wave
field [18]; polar molecules interacting with half-cycle
pulses in the terahertz range, that give rise to orientation
instead of alignment [19]; and elliptically polarized laser
fields that can produce three-dimensional alignment [20].

Further work in related fields is needed. For example,
nonlinear dynamics studies, such as those discussed in [6]
could help to unravel the nature of these new states. Also,
the intriguing relation between instantaneous Floquet
states and generalized Floquet eigenstates pointed out
in [13] could be studied by doing experiments on the
systems here analyzed.
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