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Kramers-Wannier Duality from Conformal Defects
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We demonstrate that the fusion algebra of conformal defects of a two-dimensional conformal field
theory contains information about the internal symmetries of the theory and allows one to read off
generalizations of Kramers-Wannier duality. We illustrate the general mechanism in the examples of the
Ising model and the three-state Potts model.
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FIG. 1 (color online). A conformal defect is transparent to the
stress tensor (a), while a bulk field � generically becomes a
sum of disorder fields (b).
Kramers and Wannier found a high/low-temperature
duality for the Ising model [1] that asserts that a correla-
tor of Ising spins h�x1 � � ��xni at inverse temperature � is
equal to a disorder correlation function h�x1 � � ��xni at
the dual inverse temperature ~� � � 1

2 ln tanh�. In the
disorder correlator, the couplings between neighboring
spins dual to the links of n=2 lines, with each of the
positions xk at the end of one of the lines, are chosen to be
antiferromagnetic (opposite to the standard ferromag-
netic nearest-neighbor coupling). This duality has since
been considerably generalized; see, e.g., [2,3].

The significance of Kramers-Wannier duality lies in the
fact that it relates the high-temperature expansion (weak
coupling regime) of a lattice model to its low-temperature
expansion (strong coupling regime) and thereby makes
the latter accessible to perturbation theory.

Kramers-Wannier–like dualities are also a useful tool
in understanding the phase structure of a lattice model. At
zero magnetic field, the Ising model has a critical point
when � � ~�. Its universality class is described by a two-
dimensional conformal field theory (CFT) with central
charge c � 1

2 . Physical quantities like critical exponents
can then be determined by a CFT calculation, relating
them to scaling dimensions of bulk fields. The critical
Ising model is self-dual under Kramers-Wannier duality,
so that a correlator involving spin and disorder fields is
equal to another correlator in the same CFT, but with spin
fields and disorder fields interchanged.

It is clearly desirable to be able to read off the possible
high/low-temperature dualities leaving a given critical
model fixed solely from knowing its universality class,
i.e., its CFT description. In this Letter, we provide such a
method by relating order/disorder dualities of CFT corre-
lators to conformal defects. Not every defect can be used
to establish a duality, but only what we will call ‘‘duality
defects.’’ Below we present a method that allows us to
identify such defects by studying the fusion algebra of all
conformal defects. Duality defects relate perturbations of
a CFT in different marginal directions, thus allowing one
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to explore the vicinity of a model in its moduli space, and
they also relate different relevant directions, allowing one
to extend the order/disorder duality of the CFT to a
genuine high/low-temperature duality away from the
critical point.

Defects in the critical Ising model.—Before exhibiting
the underlying mechanism in generality, we investigate in
some detail the critical Ising model as a first nontrivial
example. At central charge c � 1

2 theVirasoro algebra has
three unitary irreducible highest-weight representations,
which we denote by 1, �, ". Their weights are h1 � 0,
h� � 1

16 , and h" �
1
2 . Correspondingly, there are three

primary bulk fields, the identity 1, the spin field ��z�
and the energy field "�z�, with chiral/antichiral conformal
weights �0; 0�, � 116 ;

1
16�, and �12 ;

1
2�, respectively.

Next, we introduce conformal defects. One can think
of a conformal defect on a surface as being obtained by
cutting the surface along the defect line and rejoining the
two sides of the cut by an appropriate boundary condition,
i.e., a prescription on how bulk fields behave when cross-
ing the cut. This prescription must preserve the conformal
symmetry, i.e., both the chiral and antichiral components
T�z� and �T��z� of the conformal stress tensor must vary
continuously across the cut. In contrast, other bulk fields
are permitted to exhibit a more complicated behavior. In
fact, dragging a conformal defect across a bulk field other
than the stress tensor generally results in disorder fields,
as illustrated in Fig. 1.
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FIG. 2 (color online). The TFT-representation of the pulling a
defect of type � past a spin field. Collapsing the circular
�-Wilson line on the rhs generates the TFT representation of
the disorder field ��z�.
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FIG. 3 (color online). Taking defects of type � and " past
field insertions. The TFT representation of (a) is given in Fig. 2.
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Because the defect line commutes with the stress ten-
sor, it can be continuously deformed without changing
the value of a correlator. In this sense a conformal defect
is tensionless. Defect lines can only start and end on field
insertions. Such fields are called disorder fields. Since a
defect is invisible to T and �T, disorder fields fall into
representations of two copies of theVirasoro algebra, just
as the bulk fields do.

By an argument similar to one used in the analysis of
conformal boundary conditions [4], in the Ising model
one finds three conformal defects [5]. They are labeled by
the three c � 1

2 irreps of the Virasoro algebra. The defect
of type 1 is the trivial defect, in the presence of which all
fields are continuous. The " defect corresponds to a line of
antiferromagnetic couplings in the lattice realization,
while the � defect does not have a straightforward lattice
interpretation [6] and has long been overlooked. The
appearance of the � defect illustrates that a systematic
analysis of a universality class, using CFT methods, can
lead to structural insight not obvious from studying a
concrete lattice realization.

In addition to the bulk fields 1, ��z�, and "�z� we will
also consider the disorder field ��z�. Pairs of disorder
fields ��z1� and ��z2� are joined by a defect line of type
". A disorder field has the same conformal weights as the
spin field, i.e., � 116 ;

1
16�.

The results reported in this Letter are obtained in the
approach to CFT [7,8] that is based on topological field
theory (TFT) in three dimensions. A chiral CFT can be
described by the boundary degrees of freedom of a three-
dimensional topological field theory [9,10]. The observ-
ables of the TFT are (networks of) Wilson lines. Each
Wilson line is labeled by a representation of the chiral
algebra of the CFT, i.e., by 1,�, or " in the example of the
Ising model. The vertices of the network of Wilson lines
are labeled by intertwiners of the corresponding repre-
sentations. In the TFT formalism [7,8], a CFT correlator
on a surface X (oriented, without boundary) with field
insertions is described as follows: one first constructs a
three-manifold by taking an interval above each point of
X,M � X� 	1;�1
. The two boundary components X�
f1g and X� f�1g support the two chiral degrees of free-
dom of the CFT, respectively. At each field insertion on X,
a Wilson line with the corresponding label is inserted
which runs along the interval 	�1; 1
, thus connecting the
two boundary components of M. A defect line on the
surface X is described by a Wilson line inserted on X�
f0g  M and labeled again by � or ", depending on the
defect type. Consider, for instance, the effect of pulling a
� defect past a spin field ��z� as in Fig. 1(b). This turns
out to generate a disorder field��z� and an " defect. In the
TFT formalism, this process amounts to the identity in
Fig. 2, which is then easily verified.

A straightforward calculation within the TFT frame-
work allows one to find the set of rules summarized in
070601-2
Fig. 3 for taking defects past field insertions. In this fig-
ure, the normalization of the fields is chosen such that
h��z���w�i�h��z���w�i� jz�wj�1=4 and h"�z�"�w�i�
jz�wj�2. Also, three-valent vertices between two �
defects and one " defect have been labeled with a suitably
normalized intertwiner.

We can now obtain the first example for an order/
disorder duality, the correlator of four spin fields on the
sphere. In this correlator we insert a small circular �
defect, which changes the value of the correlator by the
quantum dimension dim��� �

���
2

p
of the representation

�. Pulling the defect circle around the sphere and past the
field insertions results in a disorder correlator as shown in
Fig. 4(a). Using the rules of Fig. 3, it is easy to verify that
repeating this procedure removes the " defects and re-
places the disorder fields again by spin fields. This is the
order/disorder duality of the Ising model on the sphere.
The rules in Fig. 3 immediately imply that when one
studies duality on a torus, the nontrivial topology results
in a sum over several configurations, as illustrated in
Fig. 4(b).

The mechanism can be generalized to surfaces with
boundaries. In the Ising model, the boundary conditions
are again labeled by the c � 1

2 irreps [4]: 1 and � describe
070601-2
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FIG. 4 (color online). Order/Disorder duality of a correlator
of four spin fields on a sphere, and of two spin fields on a torus,
as induced by the � defect.
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fixed boundary conditions with ‘‘spin up’’ and ‘‘spin
down,’’ respectively, while � describes the ‘‘free’’ bound-
ary condition. Owing to the Ising fusion rules � ? 1 �
� ? � � � and � ? � � 1� ", a � defect in front of a
‘‘spin up’’ or a ‘‘spin down’’ boundary condition can be
replaced by a free boundary condition without defect,
while a � defect in front of a free boundary condition
yields the sum of a ‘‘spin up’’ and a ‘‘spin down’’ bound-
ary condition. One thus obtains the well-known duality of
fixed and free boundary conditions [3].

So far, we have considered the order/disorder duality
only at the critical point. However, the rules listed in
Fig. 3 also allow us to establish the duality away from
the critical point. For example, note that taking a� defect
through the energy field "�z� results in a change of sign.
Perturbing the CFT by "�z� amounts to a change of
temperature, and applying the duality to each term in a
perturbation series leads to the equality

h��x���x0�e��
R
"�y�d2yi � h��x���x0�e�

R
"�y�d2yi

for the example of a two-point correlator on the sphere.
The general mechanism.—We are now in a position to

describe a general mechanism that works for all unitary
rational conformal field theories. For such models, there is
a finite set of primary bulk fields �a�z�. One denotes the
number of such fields transforming in representations i
and j of the chiral and antichiral symmetries, respec-
tively, by Zij. The matrix Z thus describes the modular
invariant torus partition function of the CFT.

We restrict our attention to conformal defects that
preserve enough additional symmetry to keep the model
rational.We call a defect ‘‘simple,’’ iff it cannot be written
as a sum of other defects. The number of simple defects is
given by tr�ZZt� [5,8]. Let us denote the set of simple
defects by fD�j� 2 Kg for some label set K, with the
label for the trivial defect denoted by ‘‘e.’’ In general, one
must assign an orientation to a defect line.

Consider two simple defects running parallel to each
other and with the same orientation. In the limit of
vanishing distance they fuse to a single defect which is,
in general, a superposition of simple defects. This gives
rise to a (not necessarily commutative) fusion algebra of
defects [5,11], written schematically as

D� �D� �
X

�2K

N̂���D�:

In the TFT formalism, the general class of models we are
studying now is described by an algebra A in the category
of representations of the chiral algebra of the CFT.
Defects are then described as bimodules of A, and the
defect fusion rules above amount to decomposing the
tensor product over A of two bimodules into a direct
sum of simple bimodules, which can be performed ex-
plicitly. The bimodule describing the trivial defect De
070601-3
turns out to be A itself. If the two parallel defects have
opposite direction we write D� �D_

�.
Two subsets of defects turn out to be of particular

interest. The first one is the set G of grouplike defects.
A defect X is called grouplike, iff X � X_ � De. One can
show that grouplike defects are simple, so that G � K.
Further, for two grouplike defects D and D0, their fusion
D �D0 is again grouplike. This turns G into a (in general
non-Abelian) group with unitDe, viaDg �Dh � Dgh and
Dg�1 � D_

g . From Fig. 1(b) we see that taking any group-
like defect past a bulk field results in a sum of bulk fields,
since the only intermediate defect that does occur is the
trivial one, Dg �D_

g � De. Commuting a grouplike de-
fect past all bulk fields in a correlator results in a corre-
lator of different bulk fields, but having the same value.
Thus, grouplike defects produce an internal symmetry of
the CFT . For the Ising model one has G � f1; "g, a Z2

group, and from Fig. 3(d) we see that the defect " indeed
acts by reversing the sign of the spin field.

The second and larger subset is formed by the duality
defects. A defect X is a duality defect, iff there exists
another defect Y such that taking first X and then Y past a
bulk field results only in a sum of bulk fields, with no
disorder fields present. In other words, commuting X past
all fields in an order correlator in general gives a disorder
correlator. However, subsequently commuting Y past all
fields in this disorder correlator gives back an order cor-
relator. Thus, duality defects produce order-disorder
dualities of the CFT. Using the TFT formalism, one can
070601-3
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establish the following simple characterization of duality
defects: X is a duality defect iff every simple defect in
X � X_ is a grouplike defect. A detailed proof will be
presented elsewhere. Clearly, the set D of simple duality
defects satisfies G � D � K.

Note that in order to determine G and D in a given
model, it suffices to know the fusion algebra of defects. In
the Ising model one finds D � f1; �; "g � K. The dual-
ity defect � generates the original Kramers-Wannier
duality.

The above discussion is limited to the critical point.
However, suppose that for a given duality defect D� we
can find a bulk field ��z� such that taking D� past ��z�
results in another bulk field ~��z�, rather than in a sum of
bulk fields and disorder fields. (In the Ising model, the
field "�z� has this property with respect to the defect
labeled by �; see Fig. 3(c).) Then the duality induced by
D� provides an equality between a correlator of the CFT
perturbed by

R
��z�d2z and the dual correlator perturbed

by
R ~��z�d2z.

The critical three-states Potts model.—The critical
three-states Potts model has central charge c � 4=5 and
corresponds to a D-type model in the classification of
Virasoro-minimal models. It has first been considered in
[12]. The number of simple conformal defects in this
model is tr�ZZt� � 16 (and there are eight conformal
boundary conditions). The defect fusion rules can be
computed using Ocneanu quantum algebras [5,11], or
weak Hopf algebras, or by TFT methods. The result can
be summarized as follows. The set of defect labels can be
written as K � Kx �Ky with Kx � S3 [ fu�; u�g and
Ky � f1; ’g, where S3 denotes the permutation group of
three symbols. The fusion product Dx;y �Dx0;y0 �P
r2x�x0

P
s2y�y0 Dr;s is obtained by the following rules.

The product in Ky is given by Lee-Yang fusion rules ’ �

’ � 1� ’, while the product in Kx is described as
follows. For p; p0 2 S3, p � p0 is given by the product in
S3, and p � u" � u"0 with " 2 f�1g and "0 � " sgn�p�;
finally, denoting the elements of S3 by e (identity), p12,
p13, p23 (transpositions), and p123, p132 (cyclic permuta-
tions), we have u� � u� � u� � u� � e� p123 � p312

and u� � u� � u� � u� � p12 � p13 � p23. Owing to
the presence of S3, the fusion algebra of defects is non-
commutative in this model. One can convince oneself that
the grouplike defects are G � f�p; 1�jp 2 S3g and the
duality defects are D � f�x; 1�jx 2 Kxg.

The S3 structure of the grouplike defects could again
have been expected from the lattice model realization of
the three-states Potts model; it amounts to a permutation
of the three possible values of the spin.

The critical three-states Potts model contains 12 pri-
mary bulk fields and 208 primary disorder fields. Of
070601-4
these, we consider the energy operator E�z� of left/right
conformal weight �25 ;

2
5�, the two spin fields S��z� of

weight � 115 ;
1
15� and the two disorder fields Z��z� of the

same weight, where Z� generates a defect of type �p123; 1�
and Z� one of type �p132; 1�. We find that taking a duality
defect of type �u"; 1� through a spin field S,�z�, for "; , 2
f�1g, generates a disorder field Z",�z�, and vice versa.
Furthermore, takingDu�;1 past the energy field E�z� gives
�E�z�, so that the order/disorder duality at the critical
point extends to a high/low-temperature duality off the
critical point.

Conclusion.—We have demonstrated that the fusion
algebra of defects in a CFT contains a lot of physical
information: Internal symmetries correspond to group-
like defects, and the order/disorder dualities to duality
defects. The analysis is carried out within CFT, it allows
one to study symmetry properties of universality classes
of critical behavior without reference to a particular
lattice realization. To compute the dual correlator one
must simply commute a given duality defect past all field
insertions. This procedure can be applied to correlators
on surfaces of arbitrary genus and even with boundary.
Via conformal perturbation theory, one can also identify
high/low-temperature dualities in the vicinity of the
critical point.

To conclude, we mention that these considerations can
also be applied to the free boson. One then finds that T
duality is induced by duality defects, too. The defect line
in this example is labeled by the Z2-twisted representation
of the U�1�-current algebra.
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