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Comment on ‘‘Steep Sharp-Crested Gravity Waves on
Deep Water’’

Lukomsky et al. [1] give numerical evidence for the
existence of a family of two-dimensional irrotational
symmetric periodic gravity waves having a stagnation
point of the flow field inside the fluid domain and for
which the horizontal water velocities near the crest ex-
ceed the wave speed. In our opinion, the approach and the
conclusions of Ref. [1] are wrong, and here we present our
arguments.

In essence, Ref. [1] supports its claim by using trun-
cated Fourier series to approximate the flow. The conver-
gence issue is not addressed. This failure is the cause of
the erroneous conclusions of the Letter.

Using the notation in [1], if (1) holds in the distribution
sense, classical elliptic theory [2] shows that the velocity
potential ���; y� is smooth in the fluid region � �
f��; y�: x 2 R; y < ����g. But then the stream function
���; y�, of which ���; y� is the harmonic conjugate in
�, is also smooth in �. The free surface of the irregular
wave described in [1] is not the graph of a continuous
function. However, every component of the complement
of � consists of more than a single point since we do not
have points on the boundary of � for which there is a
closed curve surrounding them and consisting of points of
� only. Also, note that the free surface is a streamline,
that is, a level set of the function ����; y� � cy	. There-
fore, by the Perron method (see [2] or [3]), the harmonic
function ����; y� � cy	 is continuous up to the boundary
of the fluid domain �.

The ‘‘irregular wave’’ described in [1] has one stagna-
tion point located at a point O1 below the crest on the axis
of symmetry of the wave. Therefore, the smoothness of �
yields by the implicit function theorem that all stream-
lines not passing through O1 are smooth curves within �.
Also, note that by Bernoulli’s Law and condition (2), the
velocity field ���;�y� is bounded on compact subsets of
the closure of �. Consider the ‘‘critical streamline’’
passing through the stagnation point O1 and consisting
of two symmetric curves intersecting at O1, as depicted
in Fig. 3 from Ref. [1]. Any streamline passing through a
point in � located above the critical streamline cannot
cross the critical streamline by the uniqueness property of
the differential system for the particle trajectories, en-
sured by the smoothness of � in � [4]. Moreover, the
equilibrium point O1, being a saddle point in the phase
plane of the differential system for the particle trajecto-
ries, cannot be a limit point.We conclude by the Poincaré-
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Bendixon theorem [4] that each such streamline must
intersect the free surface since there are no equilibrium
points above the critical streamline. But then ����; y� �
cy	 has to be equal to its constant value on the free surface
in any fluid region bounded below by the critical stream-
line. This means that there is a whole layer of stagnation
points of the flow, not just O1. The obtained contradiction
proves the impossibility of the occurrence of the wave
pattern claimed in Ref. [1].

We conclude with a remark. Numerical simulations in
[5,6] indicate that periodic gravity waves with stagnation
points of the flow inside the fluid domain (and with
overhanging profiles) are possible for water flows with
constant vorticity. See [7–9] for recent results on the
existence of rotational periodic gravity waves approach-
ing flows with stagnation points.
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