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Crystal Nucleation of Colloidal Suspensions under Shear
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We use Brownian dynamics simulations in combination with the umbrella sampling technique to
study the effect of shear flow on homogeneous crystal nucleation. We find that a homogeneous shear rate
leads to a significant suppression of the crystal nucleation rate and to an increase of the size of the
critical nucleus. A simple, phenomenological extension of classical nucleation theory accounts for these
observations. The orientation of the crystal nucleus is tilted with respect to the shear direction.

DOI: 10.1103/PhysRevLett.93.068303

The formation of crystals in a supercooled melt is a
fascinating yet complex process. It is initiated by a micro-
scopic nucleation event. The resulting embryonic crystal
then grows to macroscopic size. Understanding the prin-
ciples of nucleation and growth is essential for many
applications ranging from tailored protein crystallization
to metallurgy [1-3]. At present, the most detailed experi-
mental information on crystal nucleation comes from
hard-sphere colloids [4—7]. Such suspensions are ideal
to study crystal formation, as the equilibrium and trans-
port properties of hard-sphere colloids are well under-
stood [8]. Moreover, recent progress in computer
simulations has made it possible to predict the absolute
rate of crystal nucleation in colloidal suspensions [9,10]
and thus to compare with experiment.

In the present Letter we explore the influence of shear
flow on colloidal crystal nucleation. Note that applying
shear is qualitatively different from the effect of pressure,
temperature, or additives as the latter affect the thermo-
dynamic driving force for crystallization or the rate of
crystal growth. In contrast, a system under shear ends up
in a nonequilibrium steady state. Several experimental
studies of the effect of shear on crystallization have been
reported in the literature. Some of these report a shear-
induced ordering of the liquid which enhances the nu-
cleation rate [11-14], while others [15,16] report the
observation of shear-induced suppression of crystalliza-
tion. Both phenomena can be qualitatively understood: on
the one hand, shear may induce layering in the metastable
fluid, thus facilitating crystal nucleation. On the other
hand, shear can remove matter from small crystallites
and thus works against the birth of crystals. At present, it
is not clear which mechanism is dominant, and under
what conditions. In this Letter we combine the umbrella
sampling technique from equilibrium Monte Carlo simu-
lations with Brownian dynamics simulations to study this
nonequilibrium problem. We confirm that shear sup-
presses crystal nucleation, at least for small shear rates,
as found by Butler and Harrowell [17], and in addition
characterize the associated critical nucleus.
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PACS numbers: 82.70.Dd, 61.20.Ja, 81.10.Aj, 83.60.Rs

Below, we consider homogeneous crystal nucleation in
a simple model for charge-stabilized colloidal suspen-
sions subjected to linear shear flow. The charged colloidal
particles interact via a repulsive Yukawa potential [8]
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where « is the inverse screening length and r the mutual
distance. The dimensionless strength of the interaction
Be€ has been fixed at a value Be = 1.48 X 10*, where 8 =
1/(kgT) is the inverse thermal energy and we used a cutoff
at a distance 10/k. To model the time evolution of the
sheared suspension, we used Brownian dynamics [18,19].
In this approach, hydrodynamic interactions between the
colloids are ignored. This is justified at low volume frac-
tions of charged suspensions.

The Brownian dynamics equations of motion for a
system in the presence of a steady shear rate y are of
the form

> = fi(t) -G . A

Fi(t+ 81) = Fi(r) + 6tT + 6FC + Styy,(D%. (2)
Here 7;(1) = [x;(2), y;(1), z;(¢)] is the position of the ith
colloidal particle at time 7. In a small time interval ¢,
this particle moves under influence of the sum of the
conservative forces f;(7) arising from the pair interaction
(1) of particle i with the neighboring particles. During
this motion the solvent exerts a friction. The friction
constant ¢ with the solvent is related to the diffusion
constant D by & = kT /D, while the stochastic displace-
ments are independently drawn from a Gaussian distri-
bution with zero mean and variance ((6r¢)?) = 2Dét1,
where « stands for one of the Cartesian components. The
last term in Eq. (2) represents the applied shear in the x
direction, and imposes an explicit linear flow field.
For the simulations we used a cubic simulation box with
3375 particles and Lees-Edwards periodic boundary
conditions [20]. The total simulation time was up to
10*/(k*D) for gathering statistics. The osmotic pressure
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P is kept at a constant value with isotropic volume moves.
In practice this means that after a number of Brownian
dynamics time steps the volume of the simulation box is
attempted to be modified and the particles locations are
scaled accordingly. The move is accepted following the
rules of the normal Monte Carlo simulation of the iso-
baric ensemble [18].

The number of particles inside the nucleus is deter-
mined with the aid of bond orientational order parame-
ters [21], which characterize the neighborhood of each
particle. By selecting particles with a solidlike environ-
ment that are in each others neighborhood, all particles
that belong to a cluster are identified.

According to the bulk phase diagram, the stable equi-
librium system would be a face centered cubic crystalline
phase [10,22] for our parameters. The system under con-
sideration, however, is supercooled. Hence it remains
liquid, even though the solid is more stable because,
unless the nucleation rates are huge [23], the simulation
time required to observe spontaneous crystallization is
very much longer than the duration of a run. Because of
fluctuations the liquid will continuously form and dis-
solve small nuclei. Yet, the steady state probability P(n)
that a critical crystal nucleus of n particles will form
spontaneously is extremely small. In order to speed up
this process we used the umbrella sampling technique
[24]. The basic assumption underlying its usage is that the
probability to find the system with a given cluster size is a
unique function of the thermodynamic state of the system
and of the shear rate. To compute the probability to find
the system in an unlikely state (such as a critical nucleus),
we bias the Brownian dynamics sampling in favor of the
states of interest. The actual biasing procedure is identical
to the one used in (metastable) equilibrium studies of
crystal nucleation [9], and merely works as a mathemati-
cal trick to measure the ratio of the function P(n) we want
to obtain over a known and fixed probability Py;,s(n). All
trajectories that are generated follow a normal path and
are truncated by the bias when they deviate too much
from the preferred cluster size. Rather than generating a
new configuration, the last configuration is restored from
which a new path is grown. Note that the trick of using
umbrella sampling in a dynamical simulation is generally
applicable in equilibrium and nonequilibrium situations,
is not restricted to Brownian dynamics, and enables one
to obtain information on rare events.

After correcting for the biasing function, the cluster
size distribution function is obtained. In Fig. 1 the loga-
rithm of the probability function P(n) is shown for three
nonvanishing shear rates.

In the case that no shear is applied, one can relate the
probability of finding a cluster of given size to the Gibbs
free energy. It is therefore tempting to interpret the proba-
bility functions as shown in Fig. 1 in terms of nucleation
barriers [25]. Strictly speaking this is not allowed, since
this idea stems from equilibrium considerations, while
in the present case we treat a nonequilibrium system.
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FIG. 1 (color online). Negative logarithm of the probability
P(n) of finding a cluster of n solidlike particles normalized by
P(1) for pressure BP/k® = 0.24 and different applied shear
rates, from bottom to top ¥/(k?D) =0, 0.8 X 1073, 1.6 X
1073, and 3.2 X 1073, The insets show typical snapshots of
critical nuclei for the largest shear rate (top) and the zero shear
case (bottom).

However, application of statistical mechanics outside
equilibrium can be useful (see, e.g, [26] for an effective
temperature in a sheared system), and it is a challenge to
check whether and to what extent equilibrium concepts
are applicable. In our case we consider the negative
logarithm of the cluster size distribution function as an
effective free energy.

Under this assumption a simple extension of classical
nucleation theory can be made, which incorporates the
shear rate. In classical nucleation theory the Gibbs free
energy AG of a spherical nucleus of radius R is given by

4
AG = —§7TR3pS|A,bL| + 4Ry, . 3)

On the one hand there is a gain in energy proportional to
the volume of the nucleus due to the difference in chemi-
cal potential Au between the solid with density pg and
the liquid phase. On the other hand we have a loss in
energy, since an interface between the solid nucleus and
surrounding liquid needs to be formed, described by yg;
the interfacial free energy.

It is reasonable to expect that for moderate shear rates
the chemical potential difference A u and interfacial free
energy ys; will not be affected much. This would justify
an expansion in powers of the shear rate for both these
quantities about their equilibrium values

Ap = ApD(1 + co7* + O(Y),
ys. = vs (L + ko7 + O(FY)),
where due to the invariance of the shear direction only
even powers in the shear rate ¥ need to be considered.
If we combine these expansions with the expression

from classical theory one can easily derive expressions
for AG*, the height of the nucleation barrier and N*, the
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FIG. 2 (color online). The height of the nucleation barrier
BAG* as function of the dimensionless shear rate y/«2D for
different pressures P. The solid lines are parabolic fits through
the data.

size of the critical nucleus, both of which depend quad-
ratically on the shear rate. In Fig. 2 we show the results
from our simulations where we extracted the height of the
nucleation barrier for various pressures and shear rates.
The dependence on the shear rate is confirmed by the
parabolic fits. However, we caution the reader that this
observation should not be considered as evidence that the
shear rate can really be considered as a thermodynamic
variable. In fact, in a recent study of the effect of shear on
the location of the solid/liquid coexistence in a Lennard-
Jones system, Butler and Harrowell found that no purely
thermodynamic description of the effect of shear was
possible [27]. Shear directly affects the transport of par-
ticles from the solid to the liquid phase, and this effect is
not thermodynamic. The expansion in Eq. (4) is simply a
way to represent the effect of shear as if it were purely
thermodynamic. With this caveat in mind, we continue
the remainder of the discussion in the language of classi-
cal nucleation theory.

We find that N*, the number of particles inside the
critical cluster, also depends quadratically on the applied
shear rate. Using the classical nucleation theory expres-
sions N* = (327y3)/(3p3|Aul’) and AG* = N*[Aul/2,
we can obtain the values of the second order coefficients
in Eq. (4) from a fit of the simulation data. The results are
summarized in Table I. We find a negative ¢, implying a
destabilization of the solid upon shear and a relatively
small correction of the interfacial free energy. Both ef-
fects do not strongly depend on the pressure. Note, how-
ever, that the fits for Ay and y do not yield a good
prediction for the shape of the nucleation barrier. The
shape shows deviations from the one expected by classical
nucleation theory, which is due to finite size effects of the
cluster.

A bond order analysis shows that the structure of the
nucleus is predominantly body centered cubic. Since
small nuclei are in general neither spherical nor compact
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the equilibrium barrier height BAG“?, critical nucleus size
N9 and second order corrections to the free energy difference
and interfacial free energy as obtained from the fitted simula-
tion data.

BP/K>  BAG) N coD’K* KoD? "
0.200 34 209 —4.8 X 104 6.0 X 10°
0.224 21 133 —4.1 X 10* 5.0 X 103
0.240 17 97 —3.4 % 104 4.0 X 10°

we have chosen to characterize their shape by the three
principal moments of inertia. For a truly spherical nucleus
these values would be identical, but since the shape of the
nucleus is fluctuating these moments are different. For
relatively small clusters of 100 particles the ratio of the
principal moments is roughly 6:10:12. As the nuclei grow
larger, the differences between these moments of inertia
get somewhat less. Surprisingly, the imposition of shear
does not influence these ratios. This leads to the conclu-
sion that although the size of the critical nucleus increases
with shear, the overall shape is hardly influenced. This is
different from the radial distribution functions we mea-
sured in the liquid under shear. They become increasingly
asymmetric for higher shear rates [28].

Knowledge of the eigenvectors of the inertia tensor
allows us to determine its orientation. We find that the
average orientation of the nucleus is weakly coupled to
the direction of the applied shear. In particular, we find
that the axis with the largest principal moment of inertia
is, preferably in the gradient direction, in qualitative
difference to a typical nearest neighbor particle cluster
in a sheared fluid that prefers to be in the shear direction.
The axis of the smallest principal moment of the nucleus
tends to align with the vorticity direction. This alignment
becomes more pronounced with increasing nucleus size
and with increasing shear rate.

In Fig. 3 we show the orientation of the nucleus with
respect to the shear direction. The tilt angle increases
linearly with the applied shear rate ¥ and only depends
weakly on the osmotic pressure. In order to improve the
statistical accuracy we have averaged over all cluster sizes
between N = 100 and the critical nucleus size N*. The
inset of Fig. 3 shows a schematic drawing of the preferred
orientation of a nucleus. Note that the largest dimension
of the nucleus is preferably along the vorticity direction,
i.e., perpendicular to the plane of drawing. Interestingly, a
similar tilt occurs when vesicles with a flexible shape are
exposed to a linear shear flow [29].

In conclusion, we applied the combination of umbrella
sampling and Brownian dynamics simulation to the non-
equilibrium problem of nucleation under shear, and found
that shear suppresses nucleation and leads to a larger
critical nucleus. These results can be described (but not
yet understood), using a naive extension of classical nu-
cleation theory. Most importantly the present numerical
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FIG. 3 (color online). The tilt angle 6 of the principal moment
of inertia with respect to the y axis. The inset shows a
schematic representation of the preferred orientation of the
nucleus with respect to the shear direction indicated by the
arrows.

predictions can be tested experimentally by studying the
rate of homogeneous crystal nucleation in a homogene-
ously sheared colloidal suspension. If nucleation were to
be studied in Poiseuille flow as realized in a capillary
viscometer [30], rather than in homogeneous Couette
flow, we should expect crystal nuclei to appear preferen-
tially in the middle of the flow channel.

We stress that the present findings apply to the case
where the fluid is only weakly sheared, i.e., when shear-
induced ordering in the liquid phase is, presumably, un-
important. We also note that the present results indicate
that, during sedimentation of crystal nuclei in an other-
wise stagnant solution, local shear should decrease the
rate of growth of the crystallites. There may even be
conditions where the competition between mass gain
due to crystal growth and mass loss due to shearing leads
to the selection of one particular crystallite radius. This
phenomenon should also be experimentally observable.

In this work, we ignored hydrodynamic interactions
because otherwise the computational cost would have
been prohibitive. This assumption, while reasonable for
dilute suspensions of charged colloids, is certainly not
correct in general. Finally, our method can readily be
applied to other dynamical simulation methods for rare
events and metastable systems, such as crystal nucleation
in oscillatory shear [31] and heterogeneous nucleation
near a system wall in a sheared suspension.
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