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The rheology of a granular shear flow is studied in a quasi-2D rotating cylinder. Measurements are
carried out near the midpoint along the length of the surface flowing layer where the flow is steady and
nonaccelerating. Streakline photography and image analysis are used to obtain particle velocities and
positions. Different particle sizes and rotational speeds are considered. We find a sharp transition in the
apparent viscosity (�) variation with rms velocity (u). Below the transition depth we find that the rms
velocity decreases with depth and � / u�1:5 for all the different cases studied. The material approaches
an amorphous solidlike state deep in the layer. The velocity distribution is Maxwellian above the
transition point and a Poisson velocity distribution is obtained deep in the layer. The results indicate a
sharp transition from a fluid to a fluid � solid state with decreasing rms velocity.
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Granular materials are known to exist in solidlike and
fluidlike states [1]. Physical understanding of the flow of
granular materials has thus developed along two major
themes based on the flow regime [2]. In the rapid flow —
fluidlike —regime, both theory and experimental analy-
sis are generally cast in the framework of the kinetic
theory [3]. In contrast, the slow flow —solidlike —re-
gime is most commonly described using the tools of soil
mechanics and plasticity theory [4] and recently by anal-
ogy to glasses [5–7]. These two approaches have no well-
understood region of overlap. Given the qualitative
differences between the fluid and solid states, a question
that has been open for some time relates to the criterion
for transition between fluid and solid states of granular
materials. We focus on this question.

There are few studies which focus on the transition.
Metcalfe et al. [8] studied solid to fluid transition in a
horizontally vibrated container of beads. They observed
hysteresis in the transition which was well predicted by a
dry friction model in which the friction coefficient varies
smoothly between a dynamic and a static value. A fluid-
solid transition was also observed by D’Anna and
Gremaud [5] for vertically vibrated particles. After a
sharp transition to a supercooled liquid, the material
gradually achieves a solidlike state on reducing the in-
tensity of vibration following a modified Vogel-Fulcher-
Tammann model typical of fragile glasses.

Coexisting solid and fluid phases have been studied
primarily in the context of surface flows; these comprise
a layer of fluidlike flow on a fixed bed of the same
material. Examples of surface flows which have been
well studied include heap flows [9–15] and rotating cyl-
inder flows [16–22]. Remarkably simple theories describe
the coexistence between the solid and the fluid. In
the simplest versions, the local melting and freezing is
determined by the local angle of the solid-fluid interface:
If the local angle is greater than a ‘‘neutral’’ angle, the
solid melts (the heap erodes) so as to reduce the angle and
vice versa [9,10]. Continuum models based on Coulombic
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friction models for the solid region and simple rheolog-
ical models for fluid region predict a similar behavior
[12,15]. Experimental studies show that the models based
on local angle based melting/freezing give good predic-
tions [15].

An assumption in the coarse-grained models described
above is the existence of an interface between the solid
and the fluid. However, the recent work of Komatsu
et al. [13] indicates that the surface flow on a heap decays
smoothly with depth and generates motion deep within
the heap. Studies of the velocity profile in rotating cylin-
der flow also confirm this picture of a smooth decay of the
velocity into the bed, rather than an abrupt change at an
interface [20,22].

The objective of the present work is to gain an insight
into the fluid-solid transition in granular flows focusing
on a system where both fluidlike and solidlike regions
coexist. We find a well-defined transition point in the
system which demarcates two distinct flow regions. The
behavior in each region is characterized.

Experiments are carried out in quasi-2D aluminum
cylinders (length 1 or 2 cm) of radius 16 cm [Fig. 1(a)].
The end walls are made of glass and a computer
controlled stepper motor with a sufficiently small step
is used to rotate the cylinders. Monodisperse, spherical,
shiny stainless steel balls of three different sizes are
used in the experiments (Table I). Cylinder rotation in
the rolling flow regime (rotational speed, ! � 3–9 rpm)
produces a shallow flowing surface layer and measure-
ments are made near the center of the cylinder where the
layer thickness is maximum and the flow is nonaccelerat-
ing. The particles are heavy enough and conductive so
that charge effects are negligible. The experiments
are carried out with 50% of the cylinder filled with
particles.

The motion of the particles is captured by taking high
resolution images using a digital camera (Nikon Coolpix
5000). The size of the recorded region is 2560� 1920
pixels, with one pixel corresponding to 0.016–0.03 mm
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FIG. 1. (a) Schematic of the rotating cylinder geometry show-
ing the flowing layer and the coordinate system employed. (b)
A typical image showing the portion of the flowing layer at the
center of the cylinder, with streaks of various lengths formed
across the layer for a shutter speed of 1=250 s. (c) Magnified
image of the rectangular region marked in (b) showing streaks
generated by three different particles. (d) The same three
streaks with the fitted intensity function. The optimization
yields length (2l), width (2w), orientation angle (�), and cen-
troid position (x; y) for every streak.
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depending on the distance of the camera to the cylinder.
The point source of light is directed near parallel to the
end wall of the cylinder so as to illuminate only the front
layer of the flowing particles. Each moving particle gen-
erates a streak of definite length depending on its speed
and the shutter speed of the camera. Images are taken for
a range of camera shutter speeds (1=15–1=2000 s) so as to
account for the varying velocity across the flowing layer.
This gives streaks, which are adequately long for analysis
but not so long as to overlap with other streaks, in each
part of the flowing layer [Fig. 1(b)]. Two hundred images
are taken for each shutter speed with an overall two
thousand images combined over different shutter speeds.
Because of the time interval between photographs,
each experiment typically takes 500 cylinder revolutions
( � 3 h at 3 rpm).

A parametrized intensity function corresponding to a
stretched Gaussian function is then fitted to the intensity
values of the streak pixels (and an immediate neighbor-
TABLE I. Mass (m) and diameter (d) of the particles used in
the experiments.

d (mm) 1 2 3
m (mg) 4:2� 0:06 33:5� 0:18 112:5� 0:18
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hood) in the image using Powell’s method [23] for non-
linear optimization. The fitting yields the length (2l),
width (2w), orientation angle (�), and the centroid posi-
tion (x; y) for the streak [Fig. 1(d)]. The analysis tech-
nique was calibrated by carrying out experiments with a
single particle glued to the inside of the cylinder face
plate. The error in velocity measurements was found to be
less than 3%. The flowing layer region is divided into bins
of width equal to the particle diameter and length 20 mm
parallel to the flowing layer, and the components of the
mean and the root mean square (rms) velocities for each
bin are calculated by averaging over all streaks in a bin.

Figure 2 gives the variation of the mean velocity, the
rms velocity, number density, shear rate, and shear stress
with depth (y) in the flowing layer for 2 mm particles. The
error bars show the standard deviation over ten data sets.
The mean velocity (hvxi) profile is smooth and shows
three regions: a near-linear middle region, an exponen-
tially decaying region at the bottom, and a flattened
region near the top. Similar profiles have been reported
in several previous studies [20–22,24–29]. The flattened
upper region corresponding to the low density region
of saltating particles is not seen in some studies [22,29].
The profile of the rms velocities (u) is shown in Fig. 2(b).
The rms velocity profile shows two distinct regions: a
relatively slow variation near the free surface followed by
a sharper decrease deeper in the bed. A low value is
obtained at the free surface (y � 0) because particle
trajectories are ballistic in that region due to the very
low number densities [Fig. 2(c)] and high velocities
[Fig. 2(a)]. The areal number density (n) is almost con-
stant throughout the flowing layer with a rapid decrease
near the free surface [Fig. 2(c)]. Figure 2(d) shows the
shear rate ( _�) variation in the layer, obtained by numeri-
cal differentiation of the data in Fig. 2(a). The shear rate
increases to a maximum value (corresponding to the
inflection point in the velocity field) and then decreases.
We note that an oscillating shear rate profile is obtained if
a smaller bin size is used as reported previously
[21,26,28]. The transition point in the rms velocity profile
coincides with the maximum in the shear rate.

For nonaccelerating flows, a force balance yields the
shear stress as d�yx=dy � �g sin� 	 �b
n=nb�g sin�,
where g is acceleration due to gravity, � is the inclination
of the flowing layer, nb is the number density in the
rotating packed bed, and �b is the bulk density of the
rotating packed bed. We neglect the contribution of wall
friction in the estimate. This could become significant
deeper in the bed [27]. However, based on the method of
Taberlet et al. [27], we find that the contribution is about
10% of the total stress in the cases studied and does not
qualitatively affect the results. Upon integration, we ob-
tain �yx � 
�b=nb�g sin�

R
0
y ndy assuming �xy � 0 at the

free surface. The shear stress shows a near linear increase
with depth [Fig. 2(e)]. The results of Figs. 2(d) and 2(e)
indicate that there is a qualitative change in the rheology
068001-2
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FIG. 3. Apparent viscosity (�) variation with rms velocity
(u) for all the cases studied. Filled symbols represent the points
at and above the transition velocity (uc). (a) The solid line at
the top represents a linear fit (slope ’ �1:5) to the data below
the transition point for all the cases studied. Inset: Variation of
� across the flowing layer depth (y) for 2 mm steel balls rotated
at 3 rpm. (b) The data is scaled using particle mass (m), particle
diameter (d), and average shear rate ( _�avg) obtained by a linear
fit to each corresponding velocity profile.
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FIG. 2. Mean velocity (hvxi), rms velocity (u), number density (n), shear rate ( _�), and shear stress (�yx) across the flowing layer for
2 mm steel balls rotated at 3 rpm. The error bars indicate the standard deviation over ten data sets. The solid line in (a) is a linear fit
to the mean velocity profile and the dashed line denotes the depth of transition point (yc).
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at the transition point (yc). Above yc, the shear stress
increases with shear rate which is typical of fluids.
However, below yc the shear stress increases while the
shear rate decreases. This implies that the viscosity in-
creases sharply with depth below yc, even though the
number density is nearly constant [see inset of Fig. 3(a)].

Figure 3(a) shows the variation of the apparent viscos-
ity (� � �yx= _�) with the rms velocity (u). The data points
at and above the transition point (y 
 yc) are plotted as
filled symbols. There is a sharp transition in this case as
well and the transition occurs at the same value of u as in
Fig. 2(b). In the region near the free surface, there is a
rapid increase in viscosity with decreasing rms velocity
whereas in the region approaching the fixed bed there is a
much slower power law increase with an exponent �1:5
for all the cases studied. The data below the transition
point (y � yc) scales with the particle mass m, the aver-
age shear rate ( _�avg), and d to fall on a single curve
[Fig. 3(b)], and the transition occurs at uc � 1:2 _�avgd
for all cases. Here _�avg is the shear rate obtained by fitting
a straight line to the linear portion of the velocity profile
[Fig. 2(a)]. Although the choice of range for the fit may
appear somewhat arbitrary, the average shear rate ob-
tained varies less than 5% when the number of points
used in the fit are varied. The typical variation of viscos-
ity with depth is shown for one case in Fig. 3(a) (inset).
The viscosity diverges with depth in the layer consistent
with the above results.

Figure 4 shows the distributions of the y-direction
velocity at different locations (y) across the flowing layer.
The vy distribution is Gaussian for all points above the
transition point [y 
 yc, Fig. 4(a)] and it gradually
evolves to a Poisson distribution as we go deeper into
the bed [Fig. 4(b)]. The vx distribution (not shown) is
Gaussian above the transition point. However, below the
transition point the behavior is complex and bimodal
distributions are obtained. The Maxwellian distribution
of velocities above the transition point implies fluidlike
behavior. The gradual transition to a Poisson velocity
distribution with depth indicates an increasing fraction
068001-3
of solidlike material. A similar approach to a Poisson
velocity distribution with depth was found by Mueth
[26] for dense Couette flow.

The results presented show a sharp transition between
two distinct flow regimes. In the upper region near the
free surface, the behavior is fluidlike and the velocity
068001-3
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FIG. 4. Distributions of velocity in the y direction at various
locations across the layer for 2 mm steel balls rotated at 3 rpm.
(a) The fluidlike region at and above the transition point; the
solid line represents a fitted Maxwellian distribution to the
curves at and above the transition point. (b) The region below
the transition point.
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distributions are Maxwellian. Below the transition point,
the material appears to be an amorphous soft solid, in-
creasing in strength with depth in the layer. The transition
to this solidlike regime occurs at a relatively large rms
velocity (0:05–0:1 m=s) and in a region of constant num-
ber density (n). We conjecture that the sharp transition
occurs because of the formation of a percolated network
of particles in extended contact with each other. This is in
contrast to the fluidlike regime where the particles inter-
act through collisions. The contact network coexists with
fluidlike domains and the fraction of particles which are
part of the network increase with depth. This picture for
the region below the transition point is broadly consistent
with recent measurements of Bonamy et al. [30] in which
flowing clusters were identified, as well as with nonlocal
models based on the coexistence of particle chains and
fluidlike material [31,32]. However, a more detailed study
is needed to verify this and to understand the nature of the
transition.
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