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Spin-Charge Separation in Aharonov-Bohm Rings of Interacting Electrons
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We investigate the properties of strongly correlated electronic models on a flux-threaded ring
connected to semi-infinite free-electron leads. The interference pattern of such an Aharonov-Bohm
ring shows sharp dips at certain flux values, determined by the filling, which are a consequence of spin-
charge separation in a nanoscopic system.
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In interacting electron systems in reduced spatial di-
mensions, correlation effects are strongly enhanced and
the conventional quasiparticle description of Fermi
liquids may become inapplicable. In particular for one-
dimensional (1D) systems the low-energy excitations are
entirely collective in nature, and the Luttinger-liquid
(LL) concept provides the appropriate framework to char-
acterize the electronic properties. A hallmark of the LL is
the fractionalization of the electronic excitations into
separate collective spin and charge modes, a phenomenon
known as spin-charge separation (SCS) [1,2].

With the advent of new materials and artificial struc-
tures of quasi-1D electronic character in the last decade, a
variety of experiments has been reported which seek
evidence of SCS. Prominent examples of candidate ma-
terials include the organic Bechgaard and Fabre salts [3],
molybdenum bronzes and chalcogenides [4], cuprate
chain and ladder compounds [5], and also carbon nano-
tube systems [6]. The non-Fermi-liquid normal-state
properties of high temperature superconductors have
also led to attempts to trace their origin to the possible
realization of SCS in strongly correlated electron systems
in 2D [7]. Different approaches for the identification of
SCS have included the analysis of nonuniversal power-
law I-V characteristics [4], the search for characteristic
dispersive features by angle-resolved photoemission
spectroscopy (ARPES) [8], the establishing of a violation
of the Wiedemann-Franz law [9], and the analysis of spin
and charge conductivities [8,10]. While the interpretation
of experimental results has been considered ambiguous in
some cases, a verification of SCS has been reported from
ARPES data on SrCuO2 [11].

Theoretical methods for detecting and visualizing SCS
were proposed and demonstrated many years ago. Direct
calculations of the real-time evolution of electronic wave
packets in Hubbard rings revealed that the spin and
charge densities dispersed with different velocities as an
immediate consequence of SCS [12]. Equally striking
was the analysis of transmission through Aharonov-
Bohm (AB) rings [13]. The motion of the electrons in
0031-9007=04=93(6)=067203(4)$22.50 
the ring was described by a LL propagator, where differ-
ent charge and spin velocities, vc and vs, respectively, are
included explicitly. With this assumption the flux depen-
dence of the transmission is no longer periodic only in
multiples of a flux quantum �0 � hc=e, but instead new
structures appear at fractional flux values which are
determined by the ratio vs=vc. In essence, these struc-
tures arise because transmission requires the separated
spin and charge degrees of freedom of an injected elec-
tron to recombine at the drain lead after traveling
through the ring in the presence of the AB flux.

In this Letter we propose an experimental configura-
tion which may serve as a clean and direct probe of SCS.
We employ the AB-ring transmission, focusing primarily
on the t-J model as a prototypical interacting system
relevant to artificially designed 1D nanostructures such
as small rings of quantum dots. We find a clear reduction
of the transmittance of such a device at magnetic fields
corresponding to fractional values of the flux in units of
the flux quantum. These are explained in terms of an
analysis of the momentum quantum numbers of the spin
and charge excitations, and of the orbital-flux-induced
phase shifts accumulated on traversing the ring between
the two contact leads. The flux-dependent interference
pattern in the transmission through an AB ring is thus
shown to be a valid and feasible tool for the unambiguous
detection of certain signatures of the SCS phenomenon.

The system in Fig. 1(a) has the Hamiltonian

H � Hleads �Hlink �Hring; (1)

where

Hleads � �t
X�1

i��1;�

ayi�1;�ai;� � t
X1
i�1;�

ayi;�ai�1;� � H:c:

(2)

describes free electrons in the left and right leads,

Hlink � �t0
X
�

�ay�1;�c0;� � ay1;�cL=2;� � H:c:� (3)
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FIG. 2. Transmittance as a function of flux for a tr-J model
with J � 0:001tr, tr � t, t0 � 0:3t, and L � 8 sites. The filling
of the ring is (a) N � 1 � 4, (b) N � 1 � 6, and (c) N � 1 � 8.
The transmission occurs through intermediate states with N �
3, 5, and 7 particles, respectively, which lead to minima at flux
values �d � ��1� 2ns=N� (see text).
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FIG. 1. (a) Schematic representation of an interacting system
on a ring connected by links t0 to free-electron leads. The
number of sites in the ring depicted is L � 8, and the trans-
mittance is computed from the Green function connecting sites
0 and L=2. (b) Effective model of two impurities in a single
conducting chain derived in the limit of weak t0.
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describes the exchange of quasiparticles between leads
(ai;�) and ring (cl;�), and

Hring � �eVg

X
l;�

cyl;�cl;� � tr
X
l;�

�cyl;�cl�1;�e
�i�=L � H:c:�

�Hint (4)

describes the interacting electron system. The AB ring
has length L, is threaded by flux �, where � � 2��=�0,
and is subject to an applied gate voltage Vg.

Following Ref. [13], the transmission from the left to
the right lead can be calculated to second order in t0 from
an effective low-energy Hamiltonian Heff for the system
with an additional particle of energy ! and wave vector
	k in the left or the right lead. Heff is equivalent to the
one-particle Hamiltonian for the chain represented in
Fig. 1(b), with effective energy ��!� � t0 2GR0;0�!� for
sites adjacent to the ring [ � 1 and 1 in Fig. 1(a)], and
effective hopping ~t�!� � t0 2GR0;L=2�!� across the ring;
GRi;j�!� denotes the Green function of the isolated ring.

At zero temperature, the transmittance and conduc-
tance of the system may then be computed using the
effective impurity problem. This proceeds in the
T-matrix formulation, which yields transmission ampli-
tudes based on an intersite promotion matrix [14,15]. The
transmittance T�!� is given by [13]

T�!;Vg;�� �
4t2sin2kj~t�!�j2

j�!� ��!� � teik�2 � j~t2�!�jj2
; (5)

where ! � �2t cosk is the tight-binding dispersion rela-
tion for the free electrons in the leads, which are incident
upon the impurities. These equations are exact for a non-
interacting system, while with interactions on the ring
they serve as an approximation in the tunneling limit
t0=t  1 [13]. We comment that previous calculations of
T�!;Vg� in nanoscopic systems do not include interfer-
ence effects which exist in a ring geometry.We emphasize
that this analysis is applicable only for systems in which
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the ground state before and after particle or hole injection
has no spin degeneracy. Thus Eq. (5) does not include the
Kondo effect, which arises in the spin-degenerate case,
but in any event is destroyed even by small temperatures
or applied magnetic fields.

To calculate T�!;Vg� we employ numerical diagonal-
ization of the isolated ring using a tr-J model where
Hint � J

P
lSl�Sl�1 in Eq. (4), with Sl �

P
��c

y
l����cl�

the spin at site l and implicit projection of the tr term to
single site occupancy. We consider particles incident on a
ring of L sites and N � 1 electrons, obtaining the Green
functions from the ground state of the isolated ring [16]
and substituting these in Eq. (5). We fix the energy ! � 0
to represent half-filled leads and explore the dependence
of the transmittance as a function of flux. T�0; Vg� as a
function of Vg shows narrow peaks [with a width propor-
tional to �t0�2] at gate voltages which match the excitation
energies of the system.

The transmittance of the ring, obtained by integration
over the excitations in a small energy window at the
Fermi level [13], is shown in Fig. 2 for different ring
fillings. For injection of a hole in systems containing N �
1 � 4, 6, or 8 particles [Figs. 2(a)–2(c)], the dynamical
properties correspond to N � 3, 5, or 7 particles. The
most striking result is the existence of dips at certain
flux values, which constitute a clear signature of SCS.

A first obvious feature is that the transmittance van-
ishes at flux � � �. This is expected from negative
interference of the components of the electron wave
function traveling in the upper and lower halves of the
067203-2



FIG. 3. (a) Transmittance as a function of flux for a system of
L � 8 with J � 0:001tr, N � 1 � 8 particles, and different
window sizes ranging from 0:6t to 0:15t (top to bottom) below
the Fermi energy. (b) As (a) for a selection of values of J.
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ring. Formally, it is a consequence of the reflection sym-
metry of the device through the axis containing the leads.
For � � �, the gauge transformation,

fyl;� � cyl;�e
il�=L; gym;� � aym;�ei�=2; m > 0; (6)

leads to a Hamiltonian with all hoppings real and of the
same sign, except between ring sites 0 and L� 1, where it
has the opposite sign. The transformed Hamiltonian is
clearly invariant under simultaneous reflection and sign
change of the phase of cy0;� (cyl;� $ cyL�l;� for l > 0,
cy0;� $ �cy0;� for l � 0), whereas the Green function

GR0;L=2�!� changes sign. The latter must be invariant
with respect to operators of the symmetry group of H,
and therefore vanishes along with T�!� (5).

While the presence of the dip at � � � is quite general,
the origin of the other dips in the transmittance resides in
the strongly correlated nature of the problem. We find
numerically that the peaks are better defined for small
interaction strengths (J=tr < 1=L), as discussed below,
and therefore begin our explanation of the presence of
the additional dips by assuming J � 0. In this limit the
model is equivalent to the infinite-U Hubbard model, and
complete SCS takes place on all energy scales [17,18].

Following the method of Ref. [19] for the ring with
arbitrary flux, we construct spin wave functions which
transform under the irreducible representations of the
group CN of cyclic permutations of the N spins of the
L-site system. Each of these representations is labeled by a
wave vector ks � 2�ns=N, where the integer ns charac-
terizes the spin wave function. For J � 0 each element of
CN commutes with Hring. In each subspace of states whose
spin wave function is characterized by the quantum
number ks, the problem may be mapped to that of a
noninteracting, spinless system with effective flux [19]

�eff � �� ks � �� 2�ns=N: (7)

The total energy of any state of the ring becomes

E � �2tr
XN
l�1

cos
�
kl �

�eff
L

�
; kl �

2�
L
nl; (8)

where nl and N are charge quantum numbers. Thus, the
dynamical charge properties are described completely by
a spinless model. The SCS phenomenon enters in that the
spin wave function modifies the effective flux seen by the
charges. Hole injection in an (N � 1)-particle system [or
particle injection for an (N � 1)-particle system] yields
an intermediate N-particle state with a certain weight for
each spin wave number ks, before the hole (particle) is
ejected through the other lead. Because the charge dy-
namics in the ring are determined by the flux �eff�ks�,
states with spin wave numbers ks do not contribute to the
transport when �eff�ks� � � because they interfere de-
structively (above). From Eq. (7) one therefore expects
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dips in the transmittance when � � �d with

�d � ��1� 2ns=N�: (9)

In Fig. 2 we show our numerical results for the trans-
mittance for finite J. We have considered the contribu-
tions of excitations in a finite energy window, which
accounts for possible (gate and bias) voltage fluctua-
tions and temperature effects unavoidably present in an
experimental system. For given �d�ns�, the depth of the
dip in the integrated transmittance depends on the num-
ber of energy levels which fall inside the window. If for
given Vg the window includes the destructively interfer-
ing states, then T��� exhibits dips at flux �d. The depen-
dence of the dip structures on the size of the window is
shown in Fig. 3(a) for a system with N � 1 � 8 particles.
Although the integrated transmission decreases with win-
dow width, the principal features remain present, indicat-
ing the origin of the dips in destructive interference of
levels very close to the Fermi energy. If the window size is
too large (not shown), the dip depth diminishes due to the
presence of additional, noninterfering peaks farther from
the Fermi level.

Our numerical results indicate that the above reasoning
remains valid for finite J, where SCS is incomplete. For
J � 0, the lowest-energy states with consecutive charge
quantum numbers [19] include, in general, all possible ks.
We find a schematic correspondence of these states to
effective ‘‘spin’’ subbands separated by a charge energy
scale on the order of the finite-size gap of the ring, tr=L.
SCS is then expected to remain a valid concept for the
spin and charge excitations of a small system for J=tr <
1=L, a result confirmed by the progressive loss of well-
defined dip structures in Fig. 3(b). The breakdown of SCS
067203-3



VOLUME 93, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S week ending
6 AUGUST 2004
may then be described as an intrinsic phenomenon related
to the mixing of different charge subbands. This mixing
is strongest at higher values of the flux [Fig. 3(b)]. For
small J the position of the dips is shifted slightly, but
remains close to the flux values given by Eq. (9) for all
fillings shown in Fig. 2.

We summarize briefly the connection between the
destructive interference of certain excited states, which
is responsible for the transmittance dips, and the concept
of separate, effective spin and charge velocities vs and vc
in the ring, as observed by considering the evolution of
electronic wave packets [12]. In the limit U ! 1, vs and
vc can be obtained from the ratio of the change in total
energy and momentum when either ns or one of the nl is
increased by one, using either Eqs. (7) and (8) or the
Bethe-ansatz equations of Ref. [17]. For the N-particle
intermediate states relevant to our analysis, the effective
spinless model has flux� and oddN, circumstances under
which for spin quantum number ns and flux �d�ns� one
obtains vs=vc � 1=N. This expression is then consistent
with a qualitative understanding of the dips in Figs. 2(a)–
2(c) in terms of the charge and spin components of the
injected particle performing different numbers of turns
around the ring before reuniting at the drain lead. We
stress, however, that in small tr-J and Hubbard rings a
distribution in effective velocities for the states involved
in transmission processes is unavoidable at arbitrary flux
values.

Transmittance dips should also be observable in an
Aharonov-Casher (AC) geometry, where the ring is
pierced by a charged wire [20,21], by extending the treat-
ment to the case in which different fluxes act on par-
ticles with up and down spins [22]. Specifically, the map-
ping of charge degrees of freedom to a spinless model for
J � 0 remains applicable with the substitution �! ��
�z�AC in Eq. (7), where �z is the spin projection perpen-
dicular to the plane of the ring and�AC is proportional to
the radial electric field [21]. An experimental realization
of the AB system requires the design of artificial struc-
tures, such as rings of quantum dots, on the sub-*m scale;
accessible laboratory fields will not permit AB experi-
ments on molecular rings. The wide variety of quantum-
dot assemblies synthesized in recent years [23] suggests
that such structures are well within the compass of cur-
rent nanofabrication technology [24]. Similar devices
with a charged central gate could be used for measure-
ments of the AC effect, which may also be feasible on a
more molecular scale with multiwall nanotubes, charged
nanotubes piercing large molecular rings, or closed-loop
nanotube assemblies.

In conclusion, the transmittance through AB rings of
interacting electrons provides a straighforward technique
for the detection of SCS. The existence of transmission
dips arising from nontrivial destructive interference ef-
fects at fractional values of the flux quantum �0 is a
robust signature of SCS. While the depths and widths of
067203-4
the dips vary with the system under consideration, their
positions depend only on ring filling and weakly on
interaction strengths. The experimental capability to con-
struct systems exhibiting nanoscopic SCS exists already.
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