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We determine the quantum phase diagram of a two-dimensional bosonic #-J, model as a function of
the lattice anisotropy vy, using a quantum Monte Carlo loop algorithm. We show analytically that the
low-energy sectors of the bosonic and the fermionic #-J, models become equivalent in the limit of small
v. In this limit, the ground state represents a static stripe phase characterized by a nonzero value of a
topological order parameter. This phase remains up to intermediate values of vy, where there is a
quantum phase transition to a phase-segregated state or a homogeneous superfluid with dynamic stripe

fluctuations depending on the ratio J, /.
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During the last decade a lot of attention has focused on
the study of inhomogeneous structures in strongly corre-
lated materials, such as the copper oxide based high-
temperature superconductors (HTSCs) [1]. All HTSCs
share a common feature—an antiferromagnetic (AF)
insulating parent state which evolves into a variety of
phases upon doping with carriers, either chemically or
using some external probe. In particular, there is experi-
mental evidence [2] that in part of the phase diagram
some of these compounds feature inhomogeneous charge
and spin textures, commonly known as stripes. Their
existence is usually justified by competing interactions
between the particle constituents, which lead to new
locally phase-separated states, characterized by order
parameters (OPs) implying that a broken (e.g., transla-
tional) symmetry state is in place. The real interest lies in
the relation between these stripe phases and superconduc-
tivity, since it is unknown how these quantum orders
cooperate with or compete against each other [3].

In the present Letter, we argue for the existence
of static and dynamic stripe phases in certain
(2 + 1)-dimensional lattice models of strongly correlated
materials with no charge-ordered state associated with it,
contrary to current understanding. Our starting point is
not an assumed system of interacting stripes but a system
where the latter emerge from the competition between
antiferromagnetism and delocalization. We demonstrate
that the essential physics is related to the existence of spin
antiphase domain structures which are known to be
ubiquitous in various doped AF insulators. The #-J,
Hamiltonian is a minimal model for studying that
competition which is also present in the 7-J model
Particularly, using numerical simulations we determine
the quantum phase diagram of a hard-core (HC) bosonic
t-J, planar (2D) model, illustrating the main conclusions
of this Letter. Our control parameter is the lattice anisot-
ropy v, 0 = y = 1, with y = 1 representing the isotropic
case with no explicitly broken lattice rotational symmetry
[4]. In the small y regime, a confinement interaction
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emerges with a nonvanishing topological hidden order
and static incommensurate magnetic orders. This is the
static stripe phase which, as the anisotropy is increased,
persists up to a critical value vy, where a confinement-
deconfinement transition occurs. At that point, the topo-
logical stripe order melts and gives way to a phase-seg-
regated state for J, > JS (for y = 1, see [5]) or to a
superfluid phase with static AF correlations and dynami-
cal stripe fluctuations for J¢&2 > J, > J¢!,

There is a number of significant reasons to be interested
in this model. First of all, its fermionic counterpart is
believed to be a relevant model for electron motion in the
copper oxide planes of HTSCs, responsible for unique
properties of these materials. Second, we analytically
prove that the low-energy spectra of fermionic and bo-
sonic versions of the model are identical in the limit of
weak coupling y between the chains. This is a natural
consequence of an exact result in one dimension [6].
Finally, due to the absence of the infamous fermion sign
problem, we are able to simulate the properties of the
model for large lattice sizes and very low temperatures.

We consider a 2D anisotropic t-J, model on a square
lattice for the spin-1/2 HC bosons defined in Ref. [7]:

Hg = Z (bl by, , + He) + Hy,
iv,o
1
HJ, = ZJV(Sfo+e n n1+e ) (1)

where vectors i = xe, + ye, run over all the N sites of a
2D square lattice, e, are the unit vectors of this lattice,
and bars over the operators imply that the constraint of no
more than one particle per site (the HC constraint) has
been already incorporated into the operator algebra. The
spin and the number operators on site i are defined by

(ﬁiT - ﬁu)/Z and n; = ny + g, with
bwbw Our constrained HC boson operators can be ex-
pressed in terms of standard HC boson operators,
bi b. ,, which are HC in each flavor and obey the

ior Yjo'
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commutation relations [b;, b 1= [bfg, bJr =
0, [bw, o1 = 6ij0 e (1 — 2n,). The connect1on
between the two bosonlc algebras is given by b

(1 — n;5), where & denotes the spin orientation oppo
51te to o. From this we can derive the commutators for the
algebra which defines our spin-1/2 HC bosons

{BiJ(l 27;, — Ayz) for

o=0d,

[bi D1, 1 = )

io 8; 197L b for

/
ijbi, o # o

Using the transformations introduced in Refs. [8,9], we
can map these partlcles into the HC-constrained fermion
operators, c:ro (1 — njz) and ¢;, = (1 — njz)c;,°

K;f = exp[—iZa)(j, i)7; } ?3)
J

Here, w(j, i) is the angle between the spatial vector j — i
and a fixed direction on the lattice. Thus, Hz may be
rewritten in terms of the fermionic operators

Hy= 3 Ple,etis,,,

iv,o

,THC)+H, @

with A, (i) = Y [w(k, i) — w(k, i + e,)]i,. Expressions
)] and (4) for Hy differ only in the kinetic-energy term,
with the fermionic language including a nonlocal gauge
field A, (i) associated with the change in particle ex-
change statistics. In general, this gauge field cannot be
eliminated in dimensions larger than 1, which means that
different particle statistics can give rise to different
physics. However, we will see below that the gauge field
is irrelevant and can be eliminated for the low-energy
spectrum of Hp in the strongly anisotropic region || <
|#*|. Notice that # can be finite , and therefore the problem
is still 2D. In other words, when the ratio y = |#|/|#*] is
small, the properties of the bosonic model governed by
the low-energy spectrum of Hy will be identical to the
corresponding properties of the fermionic #-J, model
(Hp = Hp[A, (i) = 0]).

Let us start by considering the limit #" = 0. In this
limit, the system is an array of one-dimensional (1D) #-J,
chains which are only magnetically coupled through J3.
From the quasiexact solution of the 1D #-J, model [6], it is
known that the lowest energy subspace M, consists of
states in which the spins are antiferromagnetically or-
dered and each hole is an antiphase domain for the Néel
OP [see Fig. 1(a)]. Since the excited subspaces containing
an extra spin excitation are separated by a finite energy
gap, M, becomes the relevant subspace to describe the
low-energy physics of weakly coupled chains. The com-
bination of the interchain magnetic coupling and the fact
that each charge is an antiphase domain gives rise to a
confining interaction between holes on adjacent chains.
This is because the misalignment of holes on the neigh-
boring chains either breaks the AF bonds or introduces
ferromagnetic links, both energetically unfavorable
[Fig. 1(b)]. The slope of the linear potential is propor-
tional to J? = yJ2. This confining interaction leads to a
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FIG. 1 (color). Intrinsic stripe formation mechanism in the
2D anisotropic #-J, model (a) and energy costs associated with
different processes: intrachain hopping (b) and interchain
hopping (c). Dynamical confinement emerges from the com-
petition between magnetism and delocalization.

formation of a hole stripe, which is simultaneously a 2D
antiphase domain boundary for the Néel OP [10]. Note
that the characteristic length of stripe fluctuations is € ~
v~ /3. For finite hole densities, p,, the stability condition
for the existence of a stripe phase is y = p31*/J3.

What happens when a small hopping £ < t*, J} is
included? As shown in Fig. 1(c), the hopping of the hole
to the adjacent chain has an energy cost of J¥/2. Since
¥ < J}, the magnetic structure again acts as a potential
barrier, confining the hole to move in the x direction. The
main effect of #’ is a second-order diagonal correction,
2(#*)?/J¥ [see Fig. 1(c)], to the energy of the hole. In other
words, the low-energy effective model for ¥ < ¢, J] is
essentially the same as the one for ¥ = 0. Consequently,
the low-energy spectra of both Hz and H are the same
for ¥ < ¢, J§; ie., the gauge field of Eq. (4) can be
eliminated at low energies because the hole is effectively
moving in the x direction (the transmutator of statistics
Kl is a symmetry of Hp restricted to its low-energy
sector). This concludes the proof of the equivalence of
the low-energy spectra of bosonic and fermionic 2D ¢-J,
models in the strongly anisotropic case.

Since a model defined by Hp is bosonic, its quantum
Monte Carlo (QMC) simulation is not affected by the sign
problem. We have used the world line loop algorithm in
the continuous imaginary-time formulation (for a review,
see [11]) similar to the one used for the 7-J model in
Ref. [12]. This method allows one to perform calculations
at very low temperatures and large lattice sizes. Unless
noted, all simulations were performed on square lattices
of linear size L ranging from 10 to 40, with p;, = 0.2, and
error bars smaller than the size of the symbols. The
anisotropy was parametrized by setting || = 1 (all other
energy parameters are measured in units of [#°]) and by
introducing a single parameter y = |#| = J; /J¥, which
may vary between zero (disconnected chains) and unity
(isotropic 2D model [5]). Temperature was fixed to
B = |*|/(kgT) = 50, which was low enough to sample
essentially the properties of the ground state. The method
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is exact up to a statistical error, and we are using periodic
boundary conditions to avoid the artificial oscillations
induced by open boundaries [13].

What observable quantities characterize a stripe
phase? As argued above, one needs to measure both the
magnetic structure factor (MSF) and a topological hidden
order to uniquely determine it. The MSF (N, = L?)

S(k) = Nize*‘“*j)@fs? (5)

N i,j

is expected to display incommensurate peaks (IPs) at
wave vectors kK = Q * (78, 0) in the presence of stripes
oriented along the y direction (across the chains), reflect-
ing the 2D character of the new antiphase boundaries [see
Fig. 1(c)]. Here, Q = (1, 7r) is the AF wave vector. The
results for the AF OP are presented in Fig. 2 for J; = 1.
For small values of y, y = 0.2, and y = 0.4, there are
pronounced peaks at wave vectors k = (7 = 7/5, w),
indicating a superstructure with a period of ten lattice
spacings, consistent with incommensurate spin ordering
and a stripelike phase. At y = 0.6 the height of the
incommensurate peaks drops, while, simultaneously, the
peak at k = Q starts to grow and becomes dominant for
v = 0.8, signaling a commensurate AF spin ordering.

IPs in S(k) do not unequivocally prove the existence of
a stripe phase since a similar behavior can be obtained,
for example, for a spin spiral phase. It is therefore crucial
for our analysis to define another quantity which unam-
biguously signals the presence of stripes. Since stripes are
topological defects (antiphase boundaries), this quantity
is called topological OP (TOP) [14] and is calculated for
every 1D chain with a fixed y coordinate. The correspond-
ing two-point correlation function is

4 2
G(y) = N_% Zo<emT(X'x’})Sfx,)')sfx+x’,y)>’ 6)
X, X' =

where S, 9 is the spin projection operator at site i =
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FIG. 2. S(k) for a 30 X 30 system at hole doping p;, = 0.2,
7 = 1, and different values of anisotropy . Standard relative
error for any data point never exceeds 10%.
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xe, + ye,,and N, = L(1 — p,) is the number of particles
in the chain. In a system with periodic boundary con-
ditions Eq. (6) is, of course, independent of y, allowing us
to average the results of TOP measurements for different
chains. The parameter T(x,x,y) is defined by
T(x, x',y) =x"+ Z)]‘;:O(l - ﬁ(ﬁp,y)). The second term
introduces an additional factor of (—1) for every hole
encountered between the positions x and x’ in the chain
with fixed coordinate y, indicating that the hole is an
antiphase boundary for the Néel OP. It can be easily
established that the TOP defined by (6) will reach its
maximum value of unity when evaluated in the ground
state of the 1D ¢-J, model. Thus, G(y) quantitatively
measures to what extent the separate chains in the 2D
system have retained their characteristic 1D ground state
topological features. A nonvanishing TOP and incom-
mensurate spin ordering in the MSF constitute strong
evidence that the system is in the stripe phase.

In order to rule out the possibility that the observed
behavior is a finite-size effect, we have extrapolated the
values of the MSF at the position of the IP (Fig. 3) and
TOP (Fig. 4) for small values of vy to the infinite system
size. Both quantities clearly tend to finite values in the
thermodynamic, L — oo, limit for the range of y studied.
It is noteworthy that for the same y range the value of the
MSF at Q extrapolates to zero (within error bars).

The nonuniform behavior of the IP height (inset of
Fig. 3) is a consequence of two competing processes. A
stronger coupling between chains leads to a stronger
confining potential, facilitating the formation of stripes.
In contrast, the same increase tends to disturb the 1D
ground state of the chains due to interchain hopping and
interactions, driving the system away from stripe order-
ing. This competition leads to an optimum value 7y, ~
0.3, for which the peak height reaches its maximum.
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FIG. 3. Finite-size scaling of S(k) at k = (47/5, 7) for J} =
1 and different values of the anisotropy vy: 0.1 (circles), 0.2
(squares), 0.3 (diamonds), and 0.4 (triangles). Lines are linear
fits to the QMC data. Data points in the inset are obtained by
extrapolation to the L — oo limit.
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FIG. 4. Finite-size scaling of the TOP G for Jf =1 and
different values of the anisotropy 7y: 0.1 (circles), 0.2 (squares),
0.3 (diamonds), and 0.4 (triangles). Lines are second-order
polynomial fits to the QMC data. Data points in the inset are
obtained by extrapolation to the L — oo limit.

Aty = vy, (see Fig. 5), both the TOP and the IP in S(k)
extrapolate to zero in the thermodynamic limit. For y >
v., we observe nonzero values of the superfluid density p,
with dominant AF correlations if JX > J¢! (for J¥ < J¢!,
the system is in the Nagaoka ferromagnetic superfluid
state). p, was calculated in a 10 X 10 cluster by comput-
ing the mean square deviation of the spatial winding
number [15]. Coexistence of AF correlations and super-
fluidity indicates that the bosons could be moving in pairs
since the propagation of individual bosons destroys the
AF ordering. For J¥ > J¢ ~ 0.5, there is a quantum phase
transition to a phase-segregated state where a hole-rich
superfluid phase coexists with an AF region with no
holes. This is the origin of the sharp AF peak of Fig. 2
(y = 0.8). Most likely, the glue that keeps particles to-
gether in the hole-rich region is still the confining inter-
action provided by the magnetic background.

In summary, we have determined the quantum phase
diagram of the planar anisotropic bosonic ¢-J, model with
periodic boundary conditions. For small values of the
anisotropy parameter y and hole doping p;, there is a
quantum stripe phase characterized by topological hid-
den order and IPsatk = Q = (4§, 0) in S(k). The stripes
are formed in the absence of any physical long-range
interactions. The glue stabilizing each stripe is a confining
potential that emerges dynamically out of the competi-
tion between the kinetic energy and the AF exchange. For
anisotropies y > 7y, a quantum phase transition to a
superfluid (deconfining) phase, coexisting with AF cor-
relations, takes place if J¢2 > J¥ > J¢!. For larger values
of J} the system phase segregates. It is remarkable that the
same attractive interaction gives rise to both the stripe
phase and phase segregation. The existence of a transition
between a superfluid and a phase-separated state in prox-
imity of the stripe instability is very suggestive when
compared with the phenomenology of the HTSC. The
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FIG. 5 (color). Quantum phase diagram of the anisotropic
bosonic #-J, model for p, =0.2 (pi = y = 1), displaying
pictorial representations of the phases.

phase-separated region must survive under a transmuta-
tion of the statistics because the fermionic kinetic energy
is always higher than the bosonic one. An attractive
interaction segregating the fermions can easily induce
a superconducting state if J is lower but close to
the critical value that leads to the phase-segregated
state. Note that for the bosonic case, this critical value
(J¢2 ~ 0.5) is slightly larger than the values of JX that are

considered realistic for the cuprate HTSC.
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