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Melting of Bosonic Stripes
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We use quantum Monte Carlo simulations to determine the finite temperature phase diagram and to
investigate the thermal and quantum melting of stripe phases in a two-dimensional hard-core boson
model. At half filling and low temperatures the stripes melt at a first order transition. In the doped
system, the melting transitions of the smectic phase at high temperatures and the superfluid smectic
(supersolid) phase at low temperatures are either very weakly first order, or of second order with no
clear indications for an intermediate nematic phase.
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Stripe phases of lattice models with broken rotational
and translational symmetry can melt in two qualitatively
different ways. One scenario is that both symmetries can
be restored at a single first or second order transition, and
the stripes melt directly into a normal fluid or superfluid
phase. The other scenario is that first the translational
symmetry is restored when the striped solid melts into a
nematic (liquid crystal) phase with broken rotational
symmetry. The rotational symmetry is then restored in
a second melting transition of the nematic phase.

This quantum lattice problem shows similarities to the
long standing-problem of the melting of a two dimen-
sional crystal into a continuum model, where there is also
either a first order melting or the Kosterlitz-Thouless-
Halperin-Nelson-Young scenario of two Kosterlitz-
Thouless transitions with an intervening hexactic phase
[1]. Clear results for the classical version of this contin-
uum problem were obtained only recently in a simple
model of hard disks [2].

Current interest in quantum mechanical stripe phases
and their melting stems from the experimental observa-
tion of stripes in some high-Tc superconductors [3] and
from the questions whether and how they are related to
the occurrence of high temperature superconductivity.
Numerically, stripe phases have been found to be com-
petitive ground states of t-J-like models [4,5].
Analytically some theories of high temperature super-
conductivity are closely linked to the existence of stripe
and nematic phases [6]. Stripe phases exist also in non-
superconducting compunds as, e.g., LSNiO [7] and have
been found in the � � 9=2; 11=2; 13=2; . . . fractional
quantum Hall systems [8].

While it is hard to study stripe phases directly in
strongly correlated fermionic models, because of the
negative sign problem of quantum Monte Carlo, we can
more accurately investigate bosonic stripes using modern
quantum Monte Carlo (QMC) algorithms [9–11]. Such
bosonic models can appear as effective low energy mod-
els neglecting nodal quasiparticles [5,12]. Like the cup-
rates, these bosonic models show competition and in some
models coexistence of superfluidity and charge order. In
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this Letter we focus on the simplest bosonic quantum
model exhibiting stripe order and determine its finite
temperature phase diagram. We carefully investigate its
thermal and quantum melting transitions to address the
question of how stripe melting occurs in a quantum
model of bosonic stripes.

Stripe-ordered ground states have been found in the
square lattice hard-core boson model with next nearest
neighbor repulsions V2 larger than half of the nearest
neighbor repulsion V1=2 [13–15]. Since the stripe phase
at finite nearest neighbor repulsion V1 connects continu-
ously with the stripe phase at V1 � 0 [15] we here set
V1 � 0 and focus on the simplest model containing only a
next nearest neighbor interaction:
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where ayi �ai� is the creation (annihilation) operator for
hard-core bosons, ni � ayi ai is the number operator, V2 	
0 are the next nearest neighbor Coulomb repulsions, and
� is the chemical potential.

In Fig. 1 we review the ground-state phase diagram of
this model which was previously studied by mean-field
calculations, renormalization group approaches, and
local-update QMC simulations [13–15]. At half filling
(density  � 1=2 at � � 2V2) the ground state is a smec-
tic for small values of t=V2 and the quantum melting
transition at low temperatures was found to be of first
order (translation symmetry is broken only in one dimen-
sion, perpendicular to the stripes; hence this phase is a
smectic). Doping this smectic stripe crystal a stable
‘‘supersolid’’ phase with coexisting stripe order and
superfluidity was found, in which the vacancies doped
into the stripes form a superfluid.

Before going into details we summarize our key results
by presenting the finite temperature phase diagrams
along the lines indicated in the ground state phase dia-
gram Fig. 1. At half filling with density  � 1=2 we find
that stripe order and superfluidity compete at low tem-
peratures, resulting in a strong first order phase transition
between the two phases [see Fig. 2(a)]. At higher tem-
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FIG. 1. Ground-state phase diagram of the hard-core boson
Hubbard model Eq. (1) as a function of t=V2 and �=V2.
Because of particle-hole symmetry, the phase diagram is
symmetric around the half filling line (density  � 1=2 at � �
2V2) and the lower half is shown. The thick lines (a) and (b)
indicate the cuts along which we show the finite-temperature
phase diagrams in Fig. 2.
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peratures the stripes melt to a normal fluid phase. The
order of that transition changes from weak first order to
second order as t=V2 ! 0. In contrast to half filling, the
smectic stripe order and superfluidity can coexist when
the stripes are doped away from half filling [Fig. 2(b)],
but the critical temperature of either order is suppressed
by the other one. We find that the superfluid smectic
(supersolid) phase behaves as a dilute gas of free hard-
core bosons, with density j� 1=2j on an anisotropic
smectic stripe background. The phase transitions away
from half filling are all either very weakly first order or of
second order. Rotational and translational symmetry
breaking occur, within our accuracy, at the same point,
and no nematic phase was observed.

Our results were obtained by a directed loop quantum
Monte Carlo simulation in the stochastic series expansion
representation [9]. The simulations were performed in the
grand canonical ensemble and do not suffer from any
systematic errors apart from finite size effects. Stripe
order is measured by the order parameter
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FIG. 2. (a) Finite temperature phase diagram as a function of
t=V2 of the half filled model and (b) as a function of the density
 along the respective lines of Fig. 1. The normal fluid and
superfluid phases are denoted by the symbols NF and SF.
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OS � Sn��; 0� � Sn�0; ��; (2)

where Sn�kx; ky� is the charge structure factor at the wave
vector �kx; ky�. To investigate a nematic phase, we have to
look for rotational symmetry breaking in the kinetic
energy or in the local charge correlations, using as order
parameters

Ok �
1

V

X

�x;y�

ay
�x;y�a�x�1;y� � ay

�x;y�a�x;y�1� � H:c: (3)

or alternatively

ON �
X

�x;y�

n�x;y�n�x�1;y� � n�x;y�n�x;y�1�; (4)

where n�x;y� � ay
�x;y�a�x;y� is the boson number operator at

lattice site �x; y� and H.c. denotes the Hermitian conju-
gate. The extent of the superfluid phase is determined by
measuring the superfluid (number) density s � mThW2i,
where W is the winding number in one of the directions
and m is the mass of a boson. s is finite in the superfluid
phase and jumps to zero from a universal value 2

�mTc at
the Kosterlitz-Thouless transition.

We now discuss the phase diagrams and the nature of
the phase transitions in more detail, starting with the half
filled system at � � 2V2, where a first order quantum
phase transition is found at V2=t � 2:24� 0:03, improv-
ing the previous estimate of Ref. [15]. When raising the
temperature we find that the transition remains of first
order as the histograms for both the stripe order parame-
ter OS and the rotational symmetry breaking order pa-
rameter ON show two clearly separated peaks
corresponding to the two coexisting phases (Fig. 3).
These two peaks survive finite size extrapolations from
simulations on system sizes L � 8, 16, and 32 and in-
dicate a single strong first order transition up to at least
T=t � 2=3 [from point (D) to (B) in Fig. 2(a)].

Measuring the superfluid density s at the coexistence
line for configurations in the fluid phase (determined by
their value of OS), we find that at low temperatures T=t
1=2 [point (C)] the stripes melt into a superfluid, while at
T=t 	 2=3 [point (B)], they melt into a normal fluid—
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FIG. 3. Histograms of the stripe order parameter OS clearly
show the double-peak structure of a first order transition which
gets more pronounced as the system size is increased.
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hence there is a tricritcal point in the range 1=2< T=t <
2=3 (between points B and C), where the Kosterlitz-
Thouless phase transition of the superfluid turns into a
first order transition.

At higher temperatures and larger repulsion V2 it
becomes harder to determine the order of the phase
transition. At V2 � 3t no double-peak structure could
be seen in the histograms for lattice sizes up to L � 32,
and the transition is thus either second order or a very
weak first order transition. In the limit of infinite repul-
sion V2 the lattice decouples into two sublattices, each of
which is equivalent to an Ising antiferromagnet with a
second order melting transition. We thus explore the pos-
sibility of a second order transition, where the fourth
order cumulant ratios C4 � 1� hO4i=3hO2i2 have a size
independent value at the transition point. Figure 4 indeed
shows a crossing of the Binder cumulants of different
system sizes in a single point, which is an indication for
second order transition. Both the fourth order cumulant
ratios for both ON and OS cross at the same temperature
within the accuracy of our results, indicating that trans-
lational symmetry breaking (measured by OS) and rota-
tional symmetry breaking (measured by ON) happen at
the same or at very close temperatures, without evidence
for an intervening nematic phase.

The phase diagram of the doped system away from half
filling shows an additional supersolid phase where the
vacancies doped into the stripes form a superfluid smectic
with broken translational and rotational symmetry as
well as a finite superfluid density. Since the rotational
symmetry is spontaneously broken in the smectic phase,
the superfluid becomes anisotropic. The superfluid density
is replaced by the geometric mean s �

�����������������
s;jjs;?

p
, where

the superfluid densities parallel (s;jj) and perpendicular
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FIG. 4. Fourth order cumulants for OS and ON as a function
of the temperature (V1 � 0, V2 � 3t). The dashed horizontal
line shows the critical value for a second order transition in the
Ising universality class. The crossing point of the fourth order
cumulant ratios for OS is not consistent with this value.
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(s;?) to the stripe order were measured for each configu-
ration from the winding numbers in either the x or the y
direction depending on whether Sn�0; �� was larger or
smaller than Sn��; 0�. Care was taken that the anisotropy
did not become too large to introduce systematic errors
[16].

Although superfluidity coexists with smectic order, it is
strongly suppressed and Tc and s vanish linearly as half
filling is approached. Using mjj � 1=2t and m? � 1

2t2=�4V2�

as the boson masses parallel and perpendicular to the
stripes, respectively, we obtain s � �0:78� 0:07�2j�
1
2 j consistent with the value obtained previously for a
dilute gas of bosons [17]. The superfluid smectic (super-
solid) phase can thus be viewed as a gas of dilute bosons
with density 2j� 1=2j. These bosons are the interstitials
(at  > 1=2) or vacancies (at  < 1=2) of the doped stripe
phase.

We repeat a similar procedure as at half filling to
determine the nature of the phase transitions. In contrast
to the half filled case, the doped case of the nearest
neighbor model [18], and previous simulations of the
current model by local update methods on small lattices
[15] we find no evidence for a first order transition.
Instead we find the smooth behavior shown in Fig. 5,
which is in agreement with analytical considerations us-
ing mean-field and spin-wave analysis [13] or renormal-
ization group calculations [14]. We again determine the
critical points for rotational and translational symmetry
breaking at a temperature T � t=6 and a coupling V2=t �
5, using both Binder cumulant ratios for OS and ON, and
the maximum of the susceptibility associated withOk for
our estimate c � 0:2468� 0:0025. Again, we find
agreement —within the error bars—of the critical points
for rotational and translational symmetry breaking, and
no indication for a nematic phase.

Finally we want to discuss our results in view of the
three possibilities for the nature of the melting transitions
of (i) a first order transition, (ii) a single second order
transition, or (iii) two separate second order transitions.
Close to half filling and at low temperatures we have very
clear evidence for a single first order transition. The
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FIG. 5. Superfluid density parallel (s;jj) and perpendicular
(s;?) to the stripes for L � 8, V2=t � 5, and T � t=6.
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results for thermal melting at higher temperatures and for
the doping-driven melting at low temperatures are not as
clear-cut. While a very weak first order transition is al-
ways possible, it is more likely that we have second order
transitions, especially in view of the fact that in the limit
t=V2 ! 1 there will be a second order transition in the
Ising universality class. One way to distinguish between
the scenarios (ii) of one single transition or (iii) of two
second order transitions with an intervening nematic
phase is that in the latter case both transitions should be
in the Ising universality class since they each break a Z2

symmetry. At the transition we would thus expect that the
Binder cumulant ratios at Tc take on the value C4 �
0:610 690 0�1� [19]. The fact that our results for the cu-
mulant ratio of OS are close but not identical to this
universal value for an Ising transition rather indicates
secnario (ii), a single second order transition in a differ-
ent universality class. In the doped system our data both
for the cumulant ratios and the scaling of the susceptibil-
ity of Ok are actually closer to the three dimensional XY
universality class predicted by Ref. [14] than the Ising
universality class. More extensive simulations on larger
systems, using newly developed flat histogram methods
for quantum systems [20] will be needed to more accu-
rately determine the universality class of this phase
transition.

Our results have shown that the simplest bosonic model
already captures the physics of the coexistence between
solid and superfluid order. A striped supersolid phase with
coexisting stripe order and superfluidity is stable at finite
temperature and behaves as a dilute gas of hard-core
bosons on an anisotropic background. In the context of
high temperature superconductivity it will be of interest,
when more powerful computers become available, to ex-
tend the current investigation to more realistic models
with stripes at 1=8 doping. These stripes will be described
by effective models with longer ranged interactions,
which could be obtained from density matrix renormal-
ization group or contractor renormalization calculations,
extending the work in Ref. [12].

While the exact order and universality class of the
melting transition are hard to determine—which is not
surprising given the difficulties known from the similar
classical problem in the continuum— our results are clear
with respect to the existence of a nematic phase. Such a
phase must be restricted to a very narrow temperature and
doping regime, smaller than the resolution of our simu-
lations and does not seem to be a generic phase in bosonic
models like Eq. (1). It might be possible to stabilize a
nematic phase with additional terms in the Hamiltonian.
One suggestion [21] is to add a term proportional to the
square of the nematic order parameter �VO2

k, to stabilize
a nematic phase. This term gives two contributions: a
nearest neighbor repulsion 2V

P
hi;jininj and an additional

next nearest neighbor hopping term V
P

hhi;jii�a
y
i aj �
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ayj ai�. The latter, frustrated hopping term, which un-
fortunately causes a negative sign problem for quantum
Monte Carlo simulations, might be important for the
stability of an extended nematic phase. It is interesting
to compare this model with the related frustrated
Heisenberg model on a square lattice. In that model,
which also exhibits translational and rotational symme-
try breaking in the ground state, it is at present contro-
versial whether these symmetry broken phases extend to
finite temperatures [22,23].
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for Monte Carlo simulations [24].
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[19] G. Kamieniarz and H. Blöte, J. Phys. A 26, 201 (1993).
[20] M. Troyer et al., Phys. Rev. Lett. 90, 120201 (2003).
[21] S. Kivelson (private communication).
[22] R. R. P. Singh et al., cond-mat/0303075.
[23] C. Weber et al., Phys. Rev. Lett. 91, 177202 (2003).
[24] M. Troyer et al., Lect. Notes Comput. Sci. 1505, 191

(1998); sources can be obtained from http://
www.comp-phys.org/.
067003-4


