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Critical Current Peaks at 3B� in Superconductors with Columnar Defects:
Recrystallizing the Interstitial Glass
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The role of commensurability and the interplay of correlated disorder and interactions on vortex
dynamics in the presence of columnar pins is studied via molecular dynamics simulations. Simulations
of dynamics reveal substantial caging effects and a nonmonotonic dependence of the critical current
with enhancements near integer values of the matching field B� and 3B� in agreement with experi-
ments on the cuprates. We find qualitative differences in the phase diagram for small and large values of
the matching field.
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The rich phases of vortex matter in high temperature
superconductors result from a complex interplay between
disorder, interactions and fluctuations [1]. Of particular
interest is the role of columnar defects created by heavy
ion radiation in forming more effectively pinned phases
of interacting vortices. Extended or correlated disorder is
much more effective at pinning vortices than uncorre-
lated (pointlike) disorder and produces upward shifts of
several tesla in the irreversibility lines and concomitantly
larger critical currents.

The physics of 3D vortex pinning via correlated dis-
order can be approximately mapped onto the problem of
interacting quantum bosons in the presence of uncorre-
lated disorder in 2D [2]. This has formed the basis for
computational studies via quantum Monte Carlo simula-
tions of local repulsive bosons [3] and exact diagonaliza-
tion [4]. Several pinned phases of vortex matter emerge as
a function of B=B�, where B� is the equivalent matching
field where the number of vortices equals the number of
defects. For the case where the pins outnumber the vor-
tices �B< B��, a Bose-glass phase is formed where vor-
tices are localized onto columnar defects and possess an
infinite tilt modulus for tilts away from columnar align-
ment. For equal numbers of vortices and defects �B �
B��, an analog to a Mott insulating phase exists which
possesses an infinite compression modulus [2]. The exis-
tence of the Bose-glass phase is well documented [1,3],
and evidence for the Mott phase has been found in recent
magnetization relaxation measurements at low tempera-
tures [5,6]. For the case when the vortices outnumber the
pins �B> B�� the situation is much less clear. Recent
work has suggested that vortices not accommodated to
the columnar defects are caged by pinned vortices to
form a weakly pinned ‘‘interstitial Bose’’ glass [2,7,8].
It has been conjectured that the melting temperature Tm
decreases rapidly as the density of interstitial vortices
increases for large fields, and either extends smoothly
into the Bose glass phase [2] or shows a change in slope
(kink) at B � B� [7,8]. Some experiments [9–12] do not
show substantial changes of the irreversibility line at B�,
0031-9007=04=93(6)=067002(4)$22.50 
while others show only a mild kink at B� [5,6,13–15].
The change is even less significant for larger defect con-
centrations (larger B�).

In analogy with the presence of Mott lobes in the dual
superconducting-insulator transition in 3D, one would
expect different phases at commensurate values of vortex
filling for B> B�. Nowak et al. found that the critical
current in Tl2Ba2CuO6�� decreases for B> B� but then
increases and goes through a maximum near 3B� [6],
which is currently unaddressed by theory.

One of the weakness of previous numerical studies
[3,4] is the use of a short-range screened interaction
which misses the softening of the shear modulus in the
absence of pins in the weak field limit as noted by Fetter,
Hohenberg and Pincus [2,16,17]. The purpose of this
paper is to address the importance of this omission via
3D molecular dynamics (MD) simulations of vortices
interacting via a long-range potential in the presence of
columnar defects. Our key result is that the softening of
the shear modulus in the low field limit has important
implications for the phase diagram. We confirm the ex-
istence of a weakly pinned interstitial glass which be-
comes more weakly pinned as the field increases in
agreement with previous studies of short-range inter-
actions [4]. However we find a qualitatively new phase
diagram for low fields where the interstitial glass melts
near B � B� and recrystallizes at higher fields when the
matching field is below a critical value. In this regime we
find strong numerical evidence for enhanced values of the
critical current near 3 times the matching field. This
questions the quantitative appropriateness of the mapping
of vortex physics onto the physics of the superconductor-
insulator transition without a properly detailed consid-
eration of long-range interactions.

We model the motion of vortices as coupled pancakes
on neighboring, continuous planes separated by a dis-
tance z, with the applied magnetic field aligned per-
pendicularly to the planes. The off-lattice simulation
models the motion of vortices referenced by a 2D coor-
dinate r under the influence of pinning and repulsive
2004 The American Physical Society 067002-1
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FIG. 1 (color online). Resistivity as a function of driving
current for different values of the applied magnetic field
referenced to the matching field B� for B�=Hc2 	 103 � 7:32
(a) and 1.525 (b), respectively. The values of B=B� are
indicated as follows: Panel (a): 0.3 (circles), 0.8 (squares),
1 (diamonds), 1.25 (up triangles), 1.48 (left triangles), and
2 (down triangles); and Panel (b): 0.5 (circles), one (squares),
1.5 (diamonds), two (up triangles), three (left triangles), and
four (down triangles). Solid lines are guides and become
thicker for smaller fields. The insets show the low current
resistivities.
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vortex interactions, and driving, line bending, and ther-
mal forces:

ml �ri � ��l _ri � fD � fT �
@H�fr1; r2:::g�

@ri
: (1)

Here fD � �0J=c is the Lorentz force per unit length due
to an applied current density J perpendicular to the mag-
netic field. �l � ��2

0=2��
2�nc2� is the Bardeen-Stephen

viscous drag coefficient, with �0��hc=2e� the flux quan-
tum and �n the normal state resistivity. The Langevin
thermal force per unit length fT is normalized to set the
rms vortex velocity via the equipartition theorem. The
HamiltonianH is the sum of the line tension for bending,
and vortex-vortex and vortex-disorder potentials per unit
length constructed via London theory. The line tension is
given by �l�� ln����0 with ���mc=mab�

2;���=�;�0�
��0=4���2, and � magnetic penetration depth. The vortex
interaction is given by a sum of pairwise interactions
Vv�v�r� � �0K�r=�� with K a Hankel function [1], and
the full long-range nature of the interaction is used. We
model the correlated extended defects as smooth para-
bolic traps of width Rp and uniform depth Vp � �l=4.
Defects are randomly placed and aligned along the c axis.

In most cases the vortex mass per unit length ml is
overall quite small in comparison with the other parame-
ters in Eq. (1) [18] and has thus usually been neglected in
previous numerical studies in 3D of vortex dynamics [19].
However, in the case of superconductors near a Mott
instability, such as the underdoped cuprates, the vortex
mass can be enhanced as the system approaches a
superconductor-insulator transition [20]. We thus keep
ml and simply relate it to the mass of the highly renor-
malized electrons confined to the vortex core region,
ml � meffn��2, with n the electron density and meff the
in-plane effective mass of the electron renormalized by
strong interactions. While we have found that the vortex
mass has an impact on the magnitude of the critical
current, the relative Jc for different vortex densities do
not drastically depend on the choices made.

Periodic boundary conditions are imposed in the
planes to maintain constant global flux density, and
open boundary conditions are employed along the c
axis. Temperature is chosen which is high enough to allow
individual vortices to be quickly accommodated to de-
fects in the absence of a driving current but well below the
glass temperature [4].

We measure all energies in units of the bare line bend-
ing energy �0 and measure all lengths in units of d � 4�.
A natural time unit t0 is chosen to be ���ld

2=�l and
the time step is further discretized in units of 0:01t0 for
the simulations. The current is measured in units of the
BCS depairing current J0 � �0c�=12

���

3
p
�2�3, and resis-

tivity in terms of the Bardeen-Stephen flux-flow resis-
tivity �BS � B�0=�c2�l�. The other parameters used in
the simulations are dictated by values appropriate for
YBa2Cu3O7: meff � 5me; Rp � 2�; � � 17 �A; z � 12 �A;
� � 100, and � � 1=25, giving Hc2 � 120 T.
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Our simulations were performed using up to 40 000
pancakes in a 128d	 128d cell containing 80 planes,
where finite size effects were found to be minimal.
Measurements were taken over a 106t0 interval after the
system reached a steady state at roughly 3	 105t0. We
typically average the results over several hundred realiza-
tions of disorder particularly at smaller driving forces.We
measure the average vortex velocity in the direction of
the Lorentz force corresponding to the voltage drop
across the sample, and determine the resistivity � � E=J.

Our results for � as a function of J are shown for a
series of vortex densities below and above the matching
field B� for two different values of B� in Figs. 1(a) and
1(b). All error bars are equal to the symbol size. For the
pinned Bose-glass regime B< B� and for appreciable B�

[Fig. 1(a)], vortices are localized on separate columnar
defects for small J until an abrupt transition to a moving
regime ensues near J
 0:1J0 when the vortices simulta-
neously become unpinned. For larger driving currents,
vortices are in the flux-flow regime and the resistivity
approaches �BS. The depinning transition occurs within a
narrow range of currents corresponding to single vortex
pinning. Consequently, as B increases, the depinning
transition occurs for smaller J and significantly broadens
as the effective role of disorder diminishes relative to the
vortex lattice interaction, in agreement with previous
simulations [4]. The resistivity increases monotonically
with increasing B as shown in the inset of Fig. 1(a). For
values of B near and above the matching field, a low-
current tail develops for small J and continues to increase
as more and more interstitial vortices are not able to
067002-2
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reside on columnar defects due to the repulsion from the
pinned vortices. These interstitial vortices are caged by
the pinned vortices forming an weakly pinned interstitial
glass with a much reduced critical current Jc, as sug-
gested in Refs. [7,8]. As B is further increased, the inter-
stitial glass melts into an interstitial liquid where
channels of vortices flow around pinned vortices for
arbitrarily small J and give a resistivity proportional to
the fraction of interstitial to pinned vortices. We note that
for our parameter choices we do not observe a Mott
insulating phase as we always have interstitial vortices
for B=B� � 1 due to the long-range vortex repulsion and
high temperatures.

Important differences, however, are observed for
smaller values of B� [Fig. 1(b)]. For B< B� in this
case, the transition to depinning occurs at lower J and
is substantially broadened compared to Fig. 1(a). A non-
monotonic dependence of the resistivity appears as shown
in the inset of Fig. 1(b). For small J, � rises with increas-
ing B for B=B� < 1:5 and becomes greater than 0:1�BS

for B
 B� as the interstitial glass melts into an intersti-
tial liquid. However, at larger fields � decreases and
becomes less than 0:1�BS for fields near 3 times the
matching field. This indicates that for low B� the Bose
glass melts into an interstitial liquid near the matching
field and recrystallizes into an interstitial glass at larger
values of B=B�, in contradiction to the phase diagram
proposed previously [7].

We can make this more quantitative by defining a
critical current density Jc as the value of J corresponding
to � � 0:1�BS. Values for Jc as a function of B=B�

obtained for MD runs of different B� are shown in
Fig. 2. Here we have normalized Jc to the maximal values
Jmax
c determined for small B=B�. For large B�, Jc=Jmax

c
decreases monotonically with B=B� with a gradual fall-
off near the matching field. For smaller values of B� this
falloff becomes much more abrupt, suggesting that
strength of the kink in the melting curve would be de-
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FIG. 2 (color online). Normalized critical currents as a
function of B=B� for different densities of columnar de-
fects. The density of defects is given by 103 	 B�=Hc2 �
1:525; 1:906; 3:05; 4:88; and 7:32 for circles, squares, down
triangles, diamonds, and up triangles, respectively. Guide lines
are thicker for smaller fields.
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pendent on the value of B�, reconciling previous experi-
ments [5,6,9–15]. For even smaller B�, the falloff is
dramatic and the interstitial glass weakens appreciably
and melts (Jc � 0) near a critical value of Bc�=Hc2 


1:9	 10�3. Remarkably, the critical current resurrects
for larger values of the magnetic field and has a broad
peak near B � 3B� for B�=Hc2 	 103 � 1:906 before
falling off again at still larger fields, as observed in
Tl2Ba2CuO6�� [6]. However, we see that still smaller
values of B� yield critical current peaks at larger values
of B=B�. While we expect that the actual value of the
critical field Bc� might depend on our choice of defining
Jc, we do not expect the re-entrance into the interstitial
glass to be qualitatively changed. A proposed phase dia-
gram which encompasses our results for different B� is
given in Fig. 3.

Using renormalization group arguments it was shown
by Nelson and Seung that for clean systems the interac-
tions between vortex lines are renormalized to zero near
Hc1 and leads to the melting of the Abrikosov lattice as
H ! Hc1 [17]. Thus we might expect that the melting of
the interstitial glass for B� B� � 0� is similar to the
melting of the vortex lattice near Hc1 [2,17]. However,
there are distinct differences for B less than or greater
than B�. For B< B� vortex localization onto unoccupied
columnar defects helps to reduce vortex fluctuations and
one might expect the Bose glass to be stable near Hc1 as
vortices occupy the strongest defects. Yet once B> B�

the interstitial vortices feel a much reduced and screened
defect interaction and suffer the downward renormaliza-
tion of the shear modulus as in clean systems. This is
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FIG. 3. Conjectured phase diagram for large (a), intermedi-
ate (b), and small (c) matching field densities.
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FIG. 4 (color online). Structure factor in the pinned phase at
3 times the matching field B=B� � 3 for 103 	 B�=Hc2 �
1:525 (left) and 7.32 (right) panels, respectively. Momentum
is measured in units of 1=d.
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borne out in our simulations for small defect concentra-
tions as measured by B�=Hc2. As the field increases our
simulations indicate that the interstitial glass recrystal-
lizes. This can be viewed as a hardening of the shear
modulus for increasing fields as the role of interactions
increases.

What leads to the recrystallization of the melted inter-
stitials at larger values of B for small defect concentra-
tions? At large vortex concentrations the Coulomb
potential is effectively short range due to screening and
the effects of disorder are also screened by flux line
collisions, and indeed our results are consistent with prior
simulations for contact repulsive potentials [4]. The sys-
tem favors forming dislocations at larger fields and vortex
domains are easily depinned. For smaller vortex concen-
trations, new physics arises as screening is no longer
effective and the bare long-range repulsive forces encour-
age longer-range ordering concomitant with decreased
prevalence of dislocations and subsequent enhanced vor-
tex pinning.

To check these ideas, we plot in Fig. 4 time-averaged
structure plots for B � 3B� at two values of B�. While
long-range order is not seen even on the length scale of
our simulations, it is clear that orientational short-range
order is more prevalent for smaller B�, with subsidiary
structure peaks at the reciprocal lattice vectors up to 1=2
the height of the central (Q � 0) peak. We would expect
that for still smaller values of B� positional order would
grow for systems of fixed finite size L with the possible
formation of Bragg-like peaks.

In summary, we have presented numerical simulations
of interacting vortex dynamics in the presence of colum-
nar disorder as a function of B=B� and B�=Hc2. We find a
monotonic decrease in the critical current for large values
of B�, with a sharp dropoff near the matching field,
consistent with prior notions of the weakly pinned inter-
stitial glass emerging at higher fields. For smaller values
067002-4
of B� however, we see abrupt melting at B � B� and re-
crystallization near B � 3B� of the interstitial glass, sug-
gesting modifications to the phase diagram due to the role
of long-range interactions even for columnar disorder. As
the interacting vortex problem with columnar disorder in
3D can be mapped onto world lines of interacting disor-
dered bosons in 2D, the intervening melted phase ob-
served here for small B� may be related to the interven-
ing phase observed both in the Bose glass in the presence
of a transverse field [15] and the intervening dissipative
metallic phase observed in 2D MoGe films [21].
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