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We employ a new laterally coupled, vertical double dot with a tunable tunnel-coupling gate in a
parallel configuration to study the electron spin and orbital dependence of quantum mechanical tunnel
coupling on the size of the honeycomb vertices in the small electron numbers regime. We find a
transition from the weak coupling regime, where fluctuations in tunnel coupling due to varying electron
configuration dominate the anticrossings, to a regime where the two dots coalesce. We apply a magnetic
field to ascertain the orbital angular momenta of the Fermi surface eigenstates, which correlate with
anticrossing size, and we identify spin pairs with congruent behavior.
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FIG. 1. (a) Structure of double quantum dot device. Top and
bottom contacts serve as drain and source electrodes. Side gates
(SG1, SG2) tune electron number in each dot; two center gates
(CG) tune tunnel coupling between dots. Center insets:
Schematic figure of electric transport and scanning electron
micrograph of device. (b) Schematic honeycomb stability dia-
gram in the Vs1-Vs2 plane, stable electron numbers in dots 1 and
2 noted. Inset: Close-up of single anticrossing, showing evolu-
tion of states along central diagonal. Delocalization region
connects two ‘‘triple points’’ (black dots). Energies and de-
scriptions of states 1, 2, and 3 in text.
Double quantum dots, or artificial molecules, are
emerging as important systems for quantum computing
and spintronics applications as well as providing labora-
tories for studying the physics of molecular bonding,
which forms the basis of all chemical and biochemical
processes. Essential to the structure of these two-center
systems is the competition between Coulomb interaction
among the electrons and quantum mechanical electron
tunneling between the two constituent ‘‘atoms.’’ While
proposed quantum computing schemes [1,2] require tun-
able tunnel coupling to mediate the exchange interaction
between electrons centered at the two sites on the one
hand, the freedom to control interactions and electron
numbers in artificial molecules permit investigation of
chemical bonding on the other hand [3,4].

Heretofore, double dot studies have been carried out in
either lateral semiconductor devices [5], where control-
lable access to the small electron numbers regime has
been evasive, or in vertical, triple barrier structures
[6,7], where the interdot coupling can be tuned only
marginally with a parallel magnetic field [8]. While re-
cent progress in reducing electron numbers in lateral
structures has occurred first in single [9] and then in
double dot systems [10], and the electron number has
indeed been reduced down to zero electrons per dot
[11], there has as yet been no detailed study of the eigen-
function dependent interdot tunnel-coupling strength and
its influence on electronic structure as displayed, for
example, in the characteristic ‘‘honeycomb’’ stability
diagram of the double dot.

In this Letter we present results of a study of transport
through a unique hybrid vertical-lateral quantum double
dot (Fig. 1), which combines small electron numbers (we
estimate that N1; N2 are both less than or equal to 12) and
adjustable interdot coupling. We measure the honeycomb
stability diagram, and, in particular, the length of honey-
comb vertices (‘‘anticrossings’’), and show evidence that
0031-9007=04=93(6)=066806(4)$22.50 
quantum mechanical level repulsion of pairs of states at
the Fermi surface makes a significant contribution to
these anticrossings. Evolution of the honeycomb with
barrier height shows a rapid decrease in the dispersion
of anticrossings, which we attribute to a merging of the
dots. We apply a magnetic field perpendicular to the dot
planes to determine the angular momenta of selected
eigenstates at the dot Fermi surfaces and we display a
correlation between these angular momenta and the anti-
crossing size, further demonstrating the significance of
the tunnel coupling. Finally, the magnetic field depen-
dence allows us to identify certain spin pairs of eigen-
states whose orbitals are identical and whose anticrossing
behavior is strongly correlated.

Our device shown schematically in Fig. 1(a) is made
from a double-barrier heterostructure (DBH) [12]. The
DBH consists of an undoped 12 nm InGaAs well and
undoped AlGaAs barriers of thicknesses 8.5 and 7.0 nm
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(the thinner one is closest to the substrate). Current flows
vertically through two dots which are coupled laterally
(center inset of Fig. 1). There are four split gates, two of
which (side gates) tune the number of electrons in each
dot independently, and the remaining two (center gates),
which are usually swept in tandem, tune the interdot
tunnel barrier height.

The scanning electron micrograph of our device is
shown in the center inset of Fig. 1(a). The double quantum
dot is located inside the 0:35� 0:8 �m2 mesa. Four
0:15 �m wide line mesas emerge from the sides of the
double dot mesa. The mesas are sufficiently thin that
current flows only through the top metal contact. The
line mesas split the surrounding Schottky gate metal
[13]. Measurements are carried out in a dilution refrig-
erator at temperature 60 mK. The source-drain voltage is
fixed at Vsd � 8 �V.

Sweeping the side gate voltages Vs1, Vs2 at several
values of the center gate voltage Vc reveals a series of
Coulomb oscillations (Fig. 2) which display a double dot
honeycomb pattern but with substantial curvature of the
oscillations particularly near the anticrossings. For the
weakest coupling, most negative Vc case [Fig. 2(a)],
the gap size fluctuates substantially from one anticrossing
to another. The charging energies of the two dots, as
determined by nonlinear transport measurements, are
about 1 meV. Using this to establish the gate-dot capaci-
tances, we find that the anticrossing energies in Fig. 2(a)
range from 0.4 meV down to 0.1 meV. For increased Vc
(smaller barrier) the anticrossing gaps widen until, at
Vc � �2:0 V [Fig. 2(b)], many of the anticrossings are
barely discernible. In this limiting case the dots have
merged (the Fermi surface of the dots is above the interdot
saddle point) and the charging energy has dropped to
0.4 meV, about half that of the single dots in Fig. 2(a).
Note that this behavior is not homogeneous throughout
the plane in Fig. 2(b) but rather depends on side gate
voltages. This cross capacitive effect results in an increase
of barrier height as the side gates become less negative,
suggesting that the laterally placed gates tend to pull the
dots apart even as they induce more electrons.
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FIG. 2. (a) Coulomb peak positions in Vs1-Vs2 plane for
center gate voltage Vc � �2:4 V and (b) Vc � �2:0 V.
Anticrossings in squares and circles in (a) are used for statis-
tical analysis (see Fig. 3). Those in squares show different
dependence on angular momenta of states (see Fig. 4).

066806-2
The ‘‘classical’’ theory of double dots [14] ascribes
these anticrossings to interdot capacitance. For smaller
dots this capacitive energy reduces to an interdot
Coulomb matrix element, Vinter, between the two local-
ized states at the Fermi surface of each dot [15]. More
generally, the structure of the anticrossing is illustrated in
Fig. 1(b) and its inset. Along a diagonal vertex the ground
state evolves from (1) a filled core (here indicated by two
filled states) with an empty level in each dot to (2) the
anticrossing regime where a single added electron is
delocalized between two, generally nonequivalent, orbi-
tals in the two dots to (3) a final state where two added
electrons occupy states localized about the individual
dots [16]. The localizing effect of adding the second
electron, which produces a state similar to the Heitler-
London (HL) state [3] for the two electrons at the Fermi
surface, occurs when Vintra � Vinter � t, where Vintra is a
typical intradot Coulomb matrix element and t is the
tunnel (i.e., symmetric-antisymmetric) splitting. Ignor-
ing interdot exchange Coulomb matrix elements [17]
and treating both Vintra and Vinter as independent of ei-
genstate, the energies of the three states are E1 � 2"1 �
Vinter � 2e
, E2 � 2"1 � ES � 2Vinter � Vintra � 3e
,
and E3 � 2"1 � 2"2 � 4Vinter � 2Vintra � 4e
, where 

is the electrostatic potential of the bottom of the two
dots (assumed equal) which depends in a complex way
on the voltages and the capacitance matrix. Also, "1;2 are
the bare energies of the two levels and ES is the energy of
the delocalized symmetric state formed from the hybrid-
ization of state 2 between dots 1 and 2, i.e., ES � "2 � t.
If 
 and 
0 are the externally applied potential
at the two triple points where E1 � E2 and E2 � E3,
respectively [Fig. 1(b) inset], it is then apparent that
�V � e�
�
0	 � 2"2 � 2ES � Vinter � 2t� Vinter.

The anticrossing data are summarized in Fig. 3 where
the average gap energies �V and their standard deviations
� are shown for three center gate voltages. Averages are
taken over the anticrossings which are highlighted with
boxes or circles in Fig. 2(a). In the HL regime, where each
electron is localized by Coulomb correlation about one
dot, the interdot Coulomb matrix element is known to be
largely insensitive to barrier height [2] and forms the
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FIG. 3. Center gate voltage Vc dependencies of mean value
�V (solid line) and standard deviation � (dashed line) of
tunnel-coupling energy �V, calculated using anticrossings
enclosed by circles and squares in Fig. 2(a).
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lower bound for the anticrossing gap energy. The tunnel-
ing strength t is, however, exponentially sensitive to
barrier penetration. Dispersion of anticrossings where t
is a significant component will, therefore, be greater. For
Vc � �2:4 V, if we take for the mean of the tunnel
splitting 2�t � �V � Vinter and use for Vinter the smallest
value of �V 
 0:08 meV, then 2�t 
 0:125 meV, which
implies �=2�t 
 0:92 [18]. We attribute the somewhat sur-
prising fact that 2�t > Vinter to the fact that the dots are
bounded by the three dimensional electron gases of the
leads and hence screening is strong.

As Vc increases, �V also increases and � decreases.
This suggests that the dots coalesce at the Fermi surface,
whereupon t increases to become the level separation in
the coalesced dot and, simultaneously, the distinction
between Vintra and Vinter vanishes, so that t > Vintra �
Vinter. In this regime, it is energetically favorable to oc-
cupy both spin states of the symmetric wave function (cf.
inset of level schematic in Fig. 3) rather than form the
localized HL states. Repeating the analysis of the gap
size, we find that now E3 � 2"1 � 2ES � �7Vinter=2	 �
�5Vintra=2	 � 4e
 and consequently e�
�
0	 � �1=2	�
�Vinter � Vintra	; i.e., the gaps are independent of the
strongly fluctuating t, and � decreases.

Each Coulomb peak, away from the anticrossing areas,
corresponds to addition of an extra electron to a localized
state in one of the two dots. The set of peaks along the Vs1
(Vs2 ) axis are labeled by A, B, C, D (a, b, c, d, e) in
Fig. 2(a). The coupling of the associated states at the
Fermi surface to a magnetic field B is paramagnetic for
low B. Hence the dependence of these Coulomb peak
positions on B, measured along dotted lines i–ii and
iii–iv in Fig. 2(a) and plotted in Figs. 4(a) and 4(b),
reveal the angular momenta of the Fermi surface states.
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FIG. 4. (a) Magnetic field dependencies of Coulomb peak position
Inset: Correlation function [19] of the anticrossing widths for stat
along dashed line iii–iv of Fig. 2(a). The labeled Coulomb oscillation
dot 2. In 2(a) and 2(b) main panels, �Vs1 (�Vs2) indicates the sh
smoothed across five magnetic field points and the plots are shifte
Fock-Darwin spectra for two adjacent parabolic wells versus pro
quantum numbers. (d) Anticrossing gap sizes, relative to mean �
derived from slopes at B � 0 in (a) and (b). Solid squares indicate
Fig. 2(a).
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It appears from the B dependence that peak pairs A and B,
C and D, a and b, and d and e are spin-pair orbitals. The
insets of Figs. 4(a) and 4(b) exhibit the correlation func-
tions [19] for anticrossing size computed from the data in
Fig. 2(a). The pairs A and B, C and D for dot 1 have
strongly correlated anticrossings, confirming their iden-
tity as spin pairs. Dot 2, however, is more ambiguous.
While d and e are strongly correlated, a and b are anti-
correlated. Further, orbital c shows a strong correlation
with b. For single vertical quantum dots with N * 6,
sequential Coulomb oscillations can often be identified
with spin-paired orbitals until a first orbital crossing
occurs, typically around B� 0:1 T [12]. If, however,
orbital degeneracy occurs at B � 0 (due to symmetry or
accidental degeneracy) then Hund’s rule can result in the
sequential filling of parallel spins in different orbitals. In
this case, a very small magnetic field breaks the degen-
eracy and changes the level filling sequence. Thus we
speculate that a and b are a spin pair at B � 0, but for
B � 0 the two Coulomb oscillations that represent spin-
pair orbitals are those labeled b and c.

Naively we expect an increase in barrier penetration,
and hence anticrossing gap, with angular momentum due
to the centrifugal barrier. We have calculated tunnel ma-
trix elements tnm;NM [20], where n;N are the principal
quantum numbers and m;M are the angular momentum
quantum numbers, employing Fock-Darwin [21] states
on two adjacent circularly parabolic wells (at B � 0).
Plotted versus the product jmjjMj in Fig. 4(c), a rising
trend is clear; however, the tnm;NM also depend clearly on
n and N. By contrast, the experimental data on the anti-
crossing gaps, Fig. 4(d), show two simple linear trends
with jmijjMIj. Thus the data cannot be explained entirely
with the angular momentum dependence of the coupling
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constants, except within very limited regions of quantum
numbers. In addition to the quantum mechanical cou-
pling, the Coulomb component of the anticrossing may
itself also be expected to depend on jmj and jMj through
their influence on wave function overlap and hence on
direct and exchange matrix elements.

The points along the steeper slope [squares in
Fig. 4(d)], corresponding to the anticrossings in boxes
in Fig. 2(a), occur for larger (negative) side gate voltages
where, even for Vc � �2:4 V , the dots may have merged.
In this case, the two electrons at the Fermi surface both
occupy the symmetric, delocalized orbital (spin up and
spin down) and the direct Coulomb matrix element will
increase with the wave function probability in the saddle
point. While this probability will also depend on angular
momenta of the participating original states, it is unclear
whether the angular momenta of the independent dot
states are still meaningful in this coalesced regime. In
summary, the anticrossings show clear increase with
angular momenta, but elucidating the trend and its rela-
tionship to the Coulomb and quantum mechanical elec-
tronic structure requires further data and theoretical
calculations.

In conclusion, we have employed a unique vertical/
lateral hybrid double dot to explore the effects of quan-
tum mechanical tunneling and many body correlations
on the anticrossings of the honeycomb stability diagram.
The structure of the honeycomb stability diagram statis-
tically separates into two regimes depending on whether
Coulomb correlation, determined by Vintra � Vinter, is
greater or less than quantum mechanical tunnel coupling
t. We have also shown that spin-paired states show corre-
lated anticrossings and that the gap sizes exhibit a clear
increasing trend with participating angular momenta.
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