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Magnetic-Field-Dependent Transmission Phase of a Double-Dot System in a Quantum Ring
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The Aharonov-Bohm effect is measured in a four-terminal open ring geometry. Two quantum dots
are embedded in the structure, one in each of the two interfering paths. The number of electrons in the
two dots can be controlled independently. The transmission phase is measured as electrons are added to
or taken away from the individual quantum dots. Although the measured phase shifts are in qualitative
agreement with theoretical predictions, the phase evolution exhibits unexpected dependence on the
magnetic field. Phase lapses are found only in certain ranges of the magnetic field.
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The phase difference of interfering paths in coherent
quantum rings can be detected in the conductance by
measuring Aharonov-Bohm (AB) oscillations. Keeping
the transmission phase of one path constant (reference
path), the phase change of the other can be measured.
This technique opens the possibility to investigate the
transmission phase which contains information comple-
mentary to the transmission probability. Multiterminal
devices avoid the restriction found in two-terminal de-
vices, where the phase is locked to 0 or � [1].

Ringlike interference geometries have been exploited
for many experiments [2–12]. Electronic phase studies
were pioneered in Refs. [2–6]. Partial phase coherence of
electron transport through a Coulomb blockaded quan-
tum dot was demonstrated in a two-terminal device [2].
The phase of the reflection coefficient of a quantum dot in
the quantum Hall regime was measured in Ref. [3]. The
expected transmission phase change of � over a quantum
dot transmission resonance was demonstrated in a multi-
terminal configuration [4]. Between resonances phase
lapses were found rather than the almost constant phase
expected in the simplest model. Similar experiments
were carried out on a Kondo-correlated system [5,6].

The issue of the phase lapses has been addressed by
theory (for a review, see [13]). The transmission phase has
to be distinguished from the Friedel phase which fulfills a
general sum rule and is a monotonic function of energy,
whereas the transmission phase can show phase lapses of
� when the transmission goes through zero [14–16]. The
measured phase may also depend on the details of the
entire interferometer, on interactions [17], and on the dot-
lead coupling [18]. The phase determined experimentally
is the transmission phase through the dot, only if the
system couples negligibly to its environment [19]. A
tunneling-Hamiltonian approach predicted the phase to
be influenced by the number and width of leads connect-
ing to the ring [20,21]. In a scattering matrix approach,
the limit of many occupied modes in the channels reflects
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the energy dependence of the resonance phase shift [22].
The equivalence of the tunneling-Hamiltonian formula-
tion and the scattering matrix approach are discussed in
[23]. Theoretical proposals have considered the situation
of two quantum dots in an AB interferometer and the
possible coupling of the dots via phase coherent transport
through the leads [24–26]. Coupled quantum dots in an
AB interferometer may be used for detecting entangle-
ment of spins [27].

Here we investigate the phase evolution of a system of
two quantum dots with negligible mutual electrostatic
interaction embedded in two arms of a four-terminal
AB ring. Phase measurements in this unique system are
desirable, because both arms of the ring including the two
dots can be tuned individually, but the phase coherence of
the entire system provides an inherent coupling mecha-
nism [24] and makes transport through the dots inter-
dependent. The arrangement enables us to control and
analyze the effect of the interferometer reference arm
on the measured phase. The transmission phase is studied
when a single electron is added to either of the two or to
both quantum dots, or interchanged between dots. At
elevated magnetic fields the results agree qualitatively
with theoretical expectations. Unexpectedly, the phase
evolution is found to depend on the magnetic field and
occasional phase lapses occur in certain field ranges.
These observations highlight the need to consider non-
local coherent effects in the entire system.

The sample is a Ga[Al]As heterostructure with a
two-dimensional electron gas (2DEG) 37 nm below the
surface. Oxide lines were written with atomic-force mi-
croscopy (AFM) lithography [28] as shown in Fig. 1(a).
Lateral gate electrodes pg1–4 tune the conductance in
each of the four ring quadrants. Measurements were
carried out at 100 mK.

In the open regime each quadrant supports two to four
modes. The AB effect is observed in a setup in which the
current and voltage contacts are the same two terminals
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FIG. 2. Plots of (a) the nonlocal voltage Vnl, (b) the currents
IB and (c) ID as functions, respectively, of Vpg1 and Vpg2 tuning
the dots in segments 1 and 2.
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FIG. 1. (a) AFM micrograph of the ring structure. Bright
oxide lines fabricated by AFM lithography lead to insulating
barriers in the 2DEG. (b) Schematic arrangement of the four
terminal ring. (c) AB oscillations in Vnl. (d) Conductance
through a quantum dot induced in segment 1 as a function of
Vpg1.
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[29]. The AB signal is maximized with a nonlocal setup:
a bias voltage Vbias was applied to terminal A [Fig. 1(b)].
Contacts B and D were grounded via current-voltage
converters measuring the currents IB and ID. Below we
call Vnl nonlocal voltage since there is no net current flow
through terminal C. Figure 1(c) shows AB oscillations in
Vnl with period 	B � 4:8 mT consistent with the ring
area A � 0:85 �m2.

If any segment is tuned close to pinch off, a Coulomb
blockaded quantum dot is induced. As an example,
Fig. 1(d) shows the conductance of segment one [A to D
in Fig. 1(b)] as a function of Vpg1 with segment three
completely pinched off and segments two and four open.
The quantum dot location can be estimated from the lever
arms of gates pg1–4. The dots form within the segments
and not at the openings to the contacts. From Coulomb
blockade diamonds we find a typical charging energy of
1 meV, corresponding, in a disk capacitor model, to the
area of a single segment. Details about the characteriza-
tion of the ring can be found in Ref. [29].

Coulomb blockade is studied in the configuration of
Fig. 1(a). We have chosen conductance peaks of one dot in
segment one (dot 1) and one in segment two (dot 2).
Segments three and four are open. The currents IB and
ID are shown in Figs. 2(b) and 2(c) as functions, respec-
tively, of Vpg1 and Vpg2 . The current IB (ID) exhibits
mainly Coulomb maxima of dot 2 (dot 1), while those
of the other dot are much weaker. The voltage Vnl in
Fig. 2(a) displays conductance resonances of both dots.
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The lever arm of Vpg1 (Vpg2) on dot 2 (dot 1) is 6 times
smaller than for the direct gate voltage. We attribute
stripes with an intermediate slope in all three quantities
to the formation of standing waves between the quantum
dots near lead A. This resonator is coupled in series to
both dots, leading to a modulation of the dot currents in
certain gate voltage ranges.

For transmission phase studies we measure Vnl as a
function of magnetic field B. The results were obtained in
a regime where the coupling to the leads was strong
enough, but the dots were still well defined. Tuning Vpg1

and Vpg2 we follow the trace ‘‘linear 2’’ in Fig. 2(a),
staying on a conductance maximum in dot 1 while step-
ping through a conductance peak in dot 2. As shown in
Fig. 3(a), IB shows the expected Coulomb peak of dot 2,
while ID changes little. At each gate voltage, AB oscil-
lations are measured. The voltage Vnl in Fig. 3(b) shows
an AB signal which is strongest in the range of the
conductance maximum. Specific traces of Vnl versus B
are depicted in Fig. 3(c).Vertical lines connect minima in
the lowest trace with maxima in the uppermost trace
indicating a phase shift of �.

The multiprobe conductance formula [1] gives Vnl �
��TCA=TCC�Vbias. The transmission coefficients Tij from
probe j to i are named according to Fig. 1(b). Considering
only h=e-periodic oscillations we assume TCC �
�
P

i�CTCi � const. In this case AB oscillations in Vnl

reflect the interference contribution to TCA from which
066802-2
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FIG. 4 (color online). AB oscillations along the different
traces indicated in Fig. 2. (a) Sweep linear 2 (b) sweep
diag 1 (c) sweep linear 1, and (d) sweep diag 2. Vertical lines
are guides to the eye. Dashed horizontal lines indicate where
maxima in the magnetic field averaged contribution to Vnl

occur.
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FIG. 3 (color online). AB oscillations in Vnl as a function of
the plunger gate voltages tuned along trace linear 2. (a) The
currents ID and IB at B � 95 mT. (b) A plot of Vnl as a function
of plunger gates and magnetic field. (c) Cross sections along
dashed lines in (b) giving Vnl vs B. The dashed lines mark
constant values of B where a � phase shift of the AB oscil-
lations can be seen, as gate voltages are tuned across the
conductance peak in dot 2.
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the phase difference between the two interfering trans-
mission amplitudes can be directly read [4]. Phase
changes seen in the currents do not directly reflect trans-
mission phase differences of the dots. We therefore con-
sider only AB oscillations in Vnl.

We have analyzed such phase shifts quantitatively for
all four traces indicated by arrows in Fig. 2(a). The fast
Fourier transform of each B sweep was multiplied with
the filter function f�!� � ��!�2=2 exp�1� ��!�2=2�
with � � h=�e

���
2

p
�A� in order to obtain the pure

h=e-periodic contribution. The inverse fast Fourier trans-
form of the filtered data gives the oscillatory component
of Vnl as a function of B plotted in Fig. 4.We have verified
that this filtering procedure does not influence the phase
of the AB oscillations by carefully comparing filtered
data with raw data.

Figure 4(a) corresponds to trace linear 2 in Fig. 2(a).
The dashed horizontal line indicates the maximum in Vnl

averaged over B. The AB amplitude is strongest close to
this line, as expected, but displays a pronounced
B dependence; i.e., it is significantly larger for B>
30 mT than below. The phase shift can be directly read
from the shift of AB maxima or minima as a function of
Vpg2. The general trend is a shift to larger B with increas-
ing Vpg2. The expected phase shift of � across the con-
ductance resonance is found for B> 50 mT. However,
there is a dip in the AB amplitude at Vpg2 � �68 mV
having a strong associated phase shift. At B � 40 mT and
Vpg2 � �68 mV [arrow in Fig. 4(a)] the AB amplitude is
zero and a phase lapse of � occurs. It lies in the flank of
the peak of the field averaged Vnl and at a point of zero
AB amplitude, similar to the observations in Ref. [4] and
in agreement with theory [15]. The novel aspect is the
occurrence of the phase lapse in a limited magnetic field
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range, beyond which it disappears in favor of a continuous
phase evolution of order �.

Along trace ‘‘diag 1’’ in Fig. 2(a) an electron is added to
both dots and we expect zero phase shift. The experimen-
tal value in Fig. 4(b) is indeed only about �=10 for B>
50 mT. At lower fields phase lapses and related phase
shifts occur similar to trace linear 2.

Measuring along trace ‘‘linear 1’’ [Fig. 4(c)] the gross
trend of the phase shift differs in sign from that in
Fig. 4(a), in agreement with the fact that we tune the
dot in the other segment. In the coupling regime of the
dots where AB oscillations are observable, Coulomb
resonances can occur close to each other. It is the case
for this sweep as indicated by the two dashed horizontal
lines in Fig. 4(c). In such a case the question arises how
the transmission phases of individual resonances combine
to the observed phase shift. We find the phase accumula-
tion across the first resonance just above Vpg1 � �60 mV
to be about �� for B between 30 and 70 mT. At higher
fields it weakens. At Vpg1 � �55 mV and between �40
and �50 mT, phase lapses influencing the phase evolution
at higher magnetic fields occur but cannot compensate
the accumulated phase completely. At the top edge of the
figure, the second resonance leads to a further phase
accumulation in the same direction as the first.

Along trace ‘‘diag 2’’ [Fig. 4(d)] an electron is moved
from dot 1 to dot 2. AB oscillation maxima shift in the
same direction as in linear 1. However, for example, at
066802-3
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B � 80 mT, the phase accumulated between Vpg1 � �68
and �56 mV is only slightly more than � rather than 2�.
Again, the phase evolution is influenced by occasional
phase lapses.

Summarizing, we have measured the AB phase in a
four terminal quantum ring with two dots embedded in
two different segments. The AB oscillations are suitable
for phase measurements only at slightly elevated B. For
50<B< 80 mT, the expected phase shifts across
Coulomb resonances are typically observed. Phase lapses
occur occasionally at vanishing AB amplitude in finite
magnetic field ranges at specific gate voltages. Outside the
B ranges where phase lapses occur, the phase evolution
can be strongly modified by their presence. Following
Taniguchi et al. [15,16], the transmission amplitude de-
scribes a curve in the complex plane as a function of gate
voltage. A phase lapse accompanied with a zero in trans-
mission occurs when this curve runs through the origin. A
change in B may shift this curve a little leading to a
strong but continuous phase shift accompanied with
small transmission. The appearance of phase lapses in
finite B intervals impedes the definition of a magnetic
field independent transmission phase. A conceivable ori-
gin of the phase lapses is the finite width of the ring
segments accommodating several modes. In the B range
investigated, the classical cyclotron radius is larger or
comparable to the ring radius. A small influence of
Lorentz force effects cannot be excluded at the highest
fields.

Our samples differ from those in Ref. [4] by design and
technological approach. We have adopted the general idea
of reflecting walls for guiding the electrons around the
ring. Compared to Ref. [4] the most noticeable feature of
our structure is the second dot in the reference arm. Its
addition gives individual control over the accumulated
phases in both arms and therefore allows to play off the
two transmission phases against each other. Since, e.g., in
the measurement labeled linear 2, the reference dot is kept
on a conductance resonance, i.e., in the position of maxi-
mum slope of the phase evolution, it is very sensitive to
changes of its resonance. Should the reference dot be
tuned slightly off resonance during the sweep linear 2,
one would expect a pronounced influence on the measured
phase evolution. The observation of a � phase change on
trace linear 2 lets us conclude that the transmission phase
through dot 1 is rather stable and the phase shift is
dominated by dot 2. Our measurement results and their
analysis extend the existing experimental work on phase
lapses by showing (i) that the occurrence of phase lapses
may depend on magnetic field and (ii) that phase lapses
still have a strong influence on the phase evolution at
magnetic fields outside the range of their occurrence.
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In this experiment, the transmission phase was mea-
sured in a system with two Coulomb blockaded quantum
dots embedded in a four-terminal quantum ring. The
phase evolution could be determined with individual
control over the electron occupancy in each dot. The
measured transmission phase depends on the magnetic
field range analyzed. Phase lapses can arise at certain
magnetic fields, while at others they give way to a con-
tinuous phase evolution. In certain B intervals the phase
behavior is in agreement with theoretical expectations,
but it is more complex than anticipated. This suggests
that, in addition to the dots, structural resonances play a
role for the transmission phase of the system.
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