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The generalized Charney-Hasegawa-Mima equation is unstable to a four wave modulational
instability whereby a coherent, monochromatic drift wave can drive a band of modes and associated
zonal flows unstable. Although initially the fastest growing modes dominate, a secondary nonlinear
instability later drives the longest wavelength zonal flow and its associated sidebands at twice the
growth rate of the fastest growing modulationally unstable modes. This results in a direct transfer from
strongly unstable short wavelength modes to the weakly unstable long wavelength modes, which drains
the short wavelength pump energy. A related but less efficient direct enstrophy cascade generates very
short wavelength modes lying outside the band of modulationally unstable modes.
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One of the most promising recent developments in
magnetically confined fusion research has been the ob-
servation of transport barriers, in both the edge and the
core plasmas. These barriers, which are characterized by
highly sheared localized poloidal E� B flows, play a
direct role in the suppression of turbulence by greatly
inhibiting both particle and energy transport, thus lead-
ing to improved confinement. The causes of these ‘‘zonal
flows’’ have been investigated by many authors.

One system that has been studied extensively with
regard to the generation of zonal flows is the Charney-
Hasegawa-Mima (CHM) equation, which was derived to
describe low frequency electrostatic drift wave turbu-
lence [1], as well as Rossby waves in atmospheric systems
[2]. The CHM equation is appealing for the simple reason
that it has successfully described a number of features of
drift wave turbulence [3]. When the CHM equation is
generalized to include a ky � 0, zero frequency (in the
linear approximation) component of the potential (i.e.,
the zonal flow), the system is unstable to a modulational
instability that can generate zonal flows by means of a
finite amplitude drift wave (generally known as the pump
wave) interacting with other drift waves with shifted
radial wave numbers (known as the sidebands) but the
same poloidal wave number. The modulational instability
has been studied by many authors [4–9], and appears to
present a viable model for the generation of zonal flows,
not just in plasmas, but also in geophysical systems where
they were first noted [10].

Despite the simplicity of the two-dimensional general-
ized Charney-Hasegawa-Mima equation (GCHME), the
mechanisms to be discussed are believed to be generic
and relevant to more realistic systems. In particular,
GCHME allows one to identify the means by which
energy and enstrophy can be transferred directly in the
early stages of the modulational instability to the slowly
growing long and stable short wavelength fluctuations
before the pump is depleted. This nonlinear equation for
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the electrostatic potential can be written as a pair of
dimensionless, nonlinear coupled partial differential
equations [Eqs. (63) and (64) in [8] ], which read
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where 
 � a=Ln, a is the system size of the simulation,
and Ln is the equilibrium gradient length scale. Further-
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V0 � �	scs=a�z�r ��, the zonal flow. The y-averaged
part of the normalized electrostatic potential is ��, while
~� represents a drift wave fluctuation. All potentials are
normalized to Te=e. The space coordinates x; y are nor-
malized to a and t to a2=�	scs�. Fully nonlinear fluid
simulations are carried out by solving Eqs. (1) and (2)
numerically [8].

We continue to concentrate on the simplest initial state
consisting of a monochromatic pump wave, which we
shall refer to as the drift wave pump with frequency !0

and wave number k � �kx; ky; 0� 
 2��mx;my; 0�, where
mx;my are integers. The magnitude of the pump wave
number is denoted by k0 � �k2x � k2y�1=2. The modula-
tional instability of such a pump wave has been described
in detail in our earlier work [8]. As discussed therein, a
zonal flow perturbation is treated as a zero frequency
mode with wave number, q��q;0;0�
2��mq;0;0�, and
mq is an integer. Such a perturbation is generated by drift
wave sidebands with wave numbers, k� � �kx � q; ky; 0�,
beating with the pump wave. This produces a modula-
tional instability with growing sideband and zonal flow
perturbations draining energy from the pump wave. The
growth rate of the modulational instability is given by
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FIG. 1 (color online). Surface plots of the Fourier amplitudes
(a) ~� and (b) �� as functions of time and mx, mq, respectively.

P H Y S I C A L R E V I E W L E T T E R S week ending
6 AUGUST 2004VOLUME 93, NUMBER 6
Eq. (49) in [8] and is illustrated in Fig. 6 of the same
reference. For a given normalized pump wave amplitude
A0, there is a band of unstable zonal flow wave numbers q.
It is clear that the wave number corresponding to maxi-
mum growth is �q	s�max � �cs=Vd�jA0j, where we tempo-
rarily revert to dimensional units for clarity, using the
definition of the diamagnetic drift velocity, Vd �

	scs=a. Initially, therefore, the wavelengths in the vi-
cinity of qmax are expected to dominate, but the nature of
the saturated nonlinear spectrum (the integral invariants
found in [8] guarantee nonlinear saturation of the
GCHME at long times) remains unclear. In the simula-
tions described in our previous work [8], the nonlinearly
saturated state contained many modes with many values
of mq, from the whole unstable band. For the case of

 � 3, although the longest wavelength zonal flow
mode mq � 1 was significant, the zonal flow was gov-
erned by the mq � 10 mode (i.e., the mode with the
maximum growth rate). The pronounced existence of
the mq � 1 mode (which is the weakest growing unstable
mode in the system) presumably arose from the rather
artificial (i.e., nongeneric) initial condition in which the
only perturbations present were the upper and lower side-
bands associated with the longest wavelength zonal flow
mode. These sidebands were present initially at a level
that was 1% of the pump amplitude corresponding to an
amplitude level orders of magnitude above the thermal
level and was more akin to a secondary pump. This raises
the question as to whether these long wavelength modes
are a characteristic of the true nonlinear state or are
merely an artifact of our simplistic initial conditions. In
order to study the evolution of the system under more
physically realistic conditions, we consider an initial
state in which all modes in the unstable band are present
at a very low amplitude (10
6 of the pump amplitude).
The dynamics of this initial state will be discussed nu-
merically and analytically.

The results of a full numerical solution with the pa-
rameters 
 � 3, 	̂ � 7:5� 10
3, kx � 2�mx � ky �
2�my � 2�� 4, and A0 � 0:01 are shown in Figs. 1
and 2. Figure 1(a) shows surface plots of the Fourier
amplitudes ~� as functions of mx (for mx � 0) and time,
while in Fig. 1(b) we plot the corresponding zonal flow
amplitudes, ��. The pump wave corresponds to mx � 4.
The negative mx values are not shown as the spectrum is
symmetrical about mx � 4. Figure 1(a) shows the modula-
tionally unstable sidebands with the fastest growing
modes clustered around mx � 13; 14, the values corre-
sponding to maximum growth (i.e., to mq � 9; 10).
Similarly, Fig. 1(b) shows the zonal flow modes domi-
nated by maximum growth initially. However, an addi-
tional and unexpected feature shown clearly by both
Figs. 1(a) and 1(b) is the appearance of a much faster
growing, long wavelength perturbation (with mx � 5;
mq � 1), which overtakes the short wavelength modes
at a later stage of the simulation. The same behavior is
also illustrated in Figs. 2(a) and 2(b). Figure 2(a) shows
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the rapid growth of the upper sideband amplitude asso-
ciated with mq � 10 and the slow initial growth of the
upper sideband amplitude associated with mq � 1. The
latter exhibits an abrupt transition to a fast growing mode
at approximately t � 0:5 and eventually overtakes the
short wavelength mode at t � 0:9. Note that this happens
before pump depletion begins, at around t � 1. The curve
labeled ‘‘ratio’’ will be discussed later. In Fig. 2(b) we
plot the zonal flow amplitudes of the mq � 10 and mq �
1 modes. It is clear that it too shows the same behavior as
the sidebands described in Fig. 2(a).

Let us now reconsider the analysis leading to the
modulational instability, but with an additional feature
suggested by the results from the numerical simulation.
The pump wave is again assumed to have the form given
by Eq. (26) in [8] with !0 � 
ky=�1� 	̂2k20� normalized
to cs	s=a2. Instead of considering a representative zonal
flow wave number, we introduce two zonal flow wave
numbers, q and p, where we assume, without loss of
generality, q > p> 0. In the numerical simulations, q �
2�mq; p � 2�mp, and mq >mp > 0. Both q and p are
assumed to be in the band of modulationally unstable
wave numbers, and we shall concentrate on the case where
both are initially in the vicinity of the fastest growing
mode. Clearly the zonal flow with mode number q is
associated with unstable sidebands, �kx � q; ky; 0�, which
grow at the rate �q given by Eq. (47) in [8].We denote this
zonal flow and sidebands by Bq and akx�q;ky 
 a�q.
Similarly, the zonal flow with wave number p (and its
065004-2
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FIG. 2 (color online). Time development of (a) the pump
amplitude, upper sidebands with mq � 1; 10, and ratio of
amplitudes; (b) zonal flow amplitudes for mq � 1; 10.
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sidebands) grows at �p given by the same dispersion
equation. This zonal flow and its sidebands are denoted
by Bp and a�p. The fastest growing, modulationally
unstable modes at first dominate the evolution of the
system. However, the longest wavelength, mq � 1, zonal
flow mode that is driven initially by A�

0a1 and A0a
�

1 is

also driven by the beating of the fastest growing modes
through the terms aqa�p and a�
qa
p to produce the dif-
ference wave number, q
 p. Both the driving terms grow
at the sum of the growth rates, �q � �p. Similar argu-
ments apply to the sidebands a�1. The long wavelength
sidebands are initially driven by A0B�1, where B
1 � B�

1,
but they are also driven by the zonal flows Bq;p and the
sidebands a�q and a�p. Although the pump wave is
initially much larger than all other modes, the nonlinear
driving terms such as aqa�p can become more important
than those involving the pump because a1 is so slowly
growing and aq and ap grow relatively much more rap-
idly. This qualitative discussion is now translated into
appropriate differential equations for the amplitudes in-
volved in this secondary nonlinear interaction. To facili-
tate the analysis we introduce the difference and sum
wave numbers,  � q
 p, ! � q� p, and the associated
‘‘triads,’’ �B ; a ; a
 �, �B!; a!; a
!�. The modified equa-
tions follow from Eqs. (1) and (2) in a manner similar to
Eqs. (38)–(40) in [8]. Thus we have, collecting the homo-
geneous terms on the left and the ‘‘driving’’terms depen-
dent on the q; p triads on the right, the following
evolution equations for the long wavelength triad,
�B ; a ; a
 �:
dB 

dt

  ky

�k2 
 k20�

 2
a A

�
0 �  ky

�k2
 
 k20�

 2
a�
 A0 � FB

 ;

(3)
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where FB
 �  ky

�k2q
k2p�
 2

aqa�p �  ky
�k2
p
k2
q�

 2
a
pa�
q.

da 
dt

� i# a 
  ky
�1� �k20 
  2�	̂2�

�1� k2 	̂
2�

A0B � F�
 ; (4)

where F�
 �qky

�1��k2
p
q2�	̂2�

�1�k2 	̂2�
a
pBq
pky

�1��k2q
p2�	̂2�

�1�k2 	̂2�
�

aqB
p.

da
 

dt
� i#
 a
 �  ky

�1� �k20 
  2�	̂2�

�1� k2
 	̂2�
A0B
 � F


 ;

(5)

where F

 �pky

�1��k2
q
p2�	̂2�

�1�k2
 	̂2�
a
qBp
qky

�1��k2p
q2�	̂2�

�1�k2
 	̂2�
�

apB
q.
Note that #� 
 !� 
!0, !� � 
ky=�1� k2� 	̂

2�,
k2� � �kx �  �2 � k2y. Similarly, k2�q � �kx � q�2 � k2y,
k2�p � �kx � p�2 � k2y. It should be apparent that Eq. (5)
follows from Eq. (4) by merely changing q ! 
q, p !

p,  ! 
 . Note that B
q � B�

q. It follows that the
homogeneous part of the above equations is identical
with Eqs. (38)–(40) in [8]. The complementary solution
to Eqs. (3)–(5) gives the slow growing, modulationally
unstable solution. An approximate solution of the modi-
fied equations can be obtained by treating the additional
coupling terms as inhomogeneous forcing effects. This is
justified because the p; q triads grow at a much faster rate,
in the initial modulational instability, as compared with
the  � q
 p triad. Making use of the modulational
instability solutions for the driving triads, �Bq; aq; a
q�,
�Bp; ap; a
p�, it is clear that all the inhomogeneous terms
have the same time dependence given by exp�i��q 

�p�t� ��q � �p�t�, where �q and �p are the real parts
of the solution of the modulational instability dispersion
relation [ie., Eq. (47) in [8] ]. Hence the particular integral
will be proportional to exp��q � �p�t, growing at close to
twice the maximum growth rate for the original modula-
tional instability. The particular integral will therefore
dominate once the q; p triads have grown sufficiently such
that products like aqa�p become larger than, say, a A�

0.
Thus, although the pump amplitude is initially much
larger than all other amplitudes, the numerical solutions
show that this condition of secondary dominance is sat-
isfied, well before the pump depletes. Hence the long
wavelength triad, �B ; a ; a
 �, grows at the above greatly
enhanced rate (relative to its initial modulational insta-
bility growth rate, � ). It is also clear that the most
strongly driven mode is the longest wavelength one,
corresponding to mq 
mp � 1. This is because the beat-
ing modes are closer together in wave number space and
can therefore both be very close to maximum growth.
Furthermore, it is evident that other neighboring modes
in the vicinity of the maximum growth contribute addi-
tively to the longest wavelength mode. Hence, the energy
from the pump cascades through the beating of the fastest
growing modes to the (initially) slowest growing mode.

There is, in addition, a further possibility. The fast
growing modes that beat together to drive up the longest
wavelength modes also drive a short wavelength triad
065004-3
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�B!; a!; a
!�, where ! � q� p. These short wavelength
modes lie in the stable region of wave number space for
the modulational instability. The above mechanism drives
them at the rate �q � �p, although the driving term
oscillates at the higher frequency �q ��p. Such
strongly unstable modes were observed in the simula-
tions, with identical growth rates to the corresponding
long wavelength triads.

The system of equations, Eqs. (3)–(5), is able to ac-
count for the most striking features of the simulations
shown in Figs. 1 and 2. A linear fit of the data gives the
growth rates of the three fastest waves as �9 � 13:36,
�10 � 13:58, and �11 � 13:41, while the nonlinear
growth rate of the mq � 1 sideband is �1 � 26:63, thus
verifying that the nonlinear growth rate of this mode is
the sum of the two fastest growing modes. The condition
for the abrupt change in the growth of the slowest grow-
ing modes can be obtained from Eq. (3). This occurs when
the ratio �k2q 
 k2p�aqa�p=�k2 
 k20�a A

�
0 > 1 [cf. Fig. 2(a)].

This ratio is plotted in Fig. 2(a) as a function of time.
Figures 2(a) and 2(b) clearly show the pronounced tran-
sition from the slowly growing modulationally unstable
regime to the very fast nonlinear growth regime. This
happens just after this condition is met for both the
mq � 1 zonal flow and its associated upper sideband. We
note that once the ratio reaches unity it hovers around this
value. This is evidently because the two terms in the ratio
then grow at the same rate due to the enhancement of the
growth of the long wavelength modes to 2�max. It can be
seen from Fig. 2(b) that in the saturated state the mq � 1
zonal flow potential is much larger than the mq � 10
potential. The zonal flow is proportional to dBq=dx, how-
ever, and detailed study shows that the fine structure of
the flow is influenced by the shortwave modes (e.g., mq �
10) while the longest wavelength mq � 1 mode has a
significant effect on the net asymmetry between the
positive and the negative flows.

Reference [3] used a sequence of three-wave interac-
tions derived from the Charney-Hasegawa-Mima equa-
tion to give a heuristic description of the generation of a
zonal flow relevant to transport reduction in magnetized
plasmas and atmospheric systems. The present work uti-
lizes the GCHME and, through the more general (and
robust) modulational instability, gives a detailed and
quantitative account of how a dramatically enhanced
growth of the long wavelength zonal flow results from a
finite amplitude monochromatic drift wave. The key new
ingredient, observed first by means of an exact numerical
simulation of the GCHME, is a secondary instability that
arises from the modulationally most unstable modes and
causes a direct transfer of the pump energy through these
fastest growing modes to the longest wavelengths. This
produces an abrupt change in the evolution of the longest
wavelength mode from a weakly growing mode to one
growing at 2�max, where �max is the maximum growth
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rate of the initial modulational instability. A similar
mechanism leads to the growth, also at 2�max, of short
wavelength modes that are initially stable. Note that other
long wavelength modes (e.g., mq � 2) are also driven by
the beat mechanism at slightly later times at somewhat
lower rates. Clearly any higher order interactions between
unstable modes can play a role only when the product of
two unstable amplitudes exceeds the product of the pump
amplitude and the unstable mode. Although these can
have fast growth, our simulations show that before
pump depletion these modes are not significant. The
beat mechanism is clearly important for the evolution
to a saturated turbulent state and to the production of the
spectrum of fluctuations. It is also clear that the mecha-
nism is generic and qualitatively explains phenomena in
more realistic systems (e.g., zonal flow and dynamo ef-
fects studied in [11]). The GCHME is possibly the sim-
plest nonlinear system that exhibits the phenomenon of
rapid zonal flow generation or inverse spectral cascading
by beating modulationally unstable short wavelength
drift waves. Although conservative, and therefore the
saturation mechanisms operative at high wave numbers
are likely to be different in GCHME from more realistic
driven-dissipative systems, its dynamical and spectral
behavior at long wavelengths are remarkably similar to
those found in more elaborate two-fluid models [11]. The
ultimate saturated spectrum in the GCHME is controlled
by its integral invariants [8], and its characterization is
beyond the scope of this work.
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