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Rayleigh-Bénard Convection in Large-Aspect-Ratio Domains
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The coarsening and wave number selection of striped states growing from random initial conditions
are studied in a nonrelaxational, spatially extended, and far-from-equilibrium system by performing
large-scale numerical simulations of Rayleigh-Bénard convection in a large-aspect-ratio cylindrical do-
main with experimentally realistic boundaries. We find evidence that various measures of the coarsen-
ing dynamics scale in time with different power-law exponents, indicating that multiple length scales
are required in describing the time dependent pattern evolution. The translational correlation length
scales with time as t0:12, the orientational correlation length scales as t0:54, and the density of defects
scale as t�0:45. The final pattern evolves toward the wave number where isolated dislocations become
motionless, suggesting a possible wave number selection mechanism for large-aspect-ratio convection.

DOI: 10.1103/PhysRevLett.93.064503 PACS numbers: 47.20.Bp, 47.27.Te, 47.52.+j, 47.54.+r
Introduction.—Rayleigh-Bénard convection in large-
aspect-ratio domains is a canonical system in which to
study the emergence of order from initial disorder in a
spatially extended system that is driven far from equilib-
rium [1]. A complete understanding of the transient dy-
namics of the emerging order and the long-time selected
pattern is still lacking. In this Letter we investigate the
emergence of striped states when a convection layer is
quenched into an ordered state from random initial con-
ditions. Although much has been learned for systems of
stripes approaching an equilibrium state (relaxational
dynamics), much remains unclear for driven systems
that are approaching a steady nonequilibrium state (non-
relaxational dynamics). This is our focus here.

An important physical property of the final selected
pattern is the spatial wave number of the convection rolls.
For relaxational systems the long-time asymptotic state is
the one that minimizes the free energy of the system (or a
frozen disordered state if the optimal state is energetically
difficult to reach). For nonrelaxational systems, however,
the long-time asymptotic state is not one minimizing a
free energy, hence raising the issue of wave number
selection. Many wave number selection mechanisms
have been identified for highly controlled situations, often
limiting the type and number of pattern defects that
interact (for example, selection by grain boundaries, dis-
locations, or regions of large curvature) or for particular
pattern geometries (such as axisymmetric convection or
spatial ramps in plate separation) [2–4]. However, an
understanding of the wave number selected in a large-
aspect-ratio domain initiated from small random thermal
perturbations remains elusive. Therefore, in a nonrelaxa-
tional system such as convection, the long-time asymp-
totic state is unknown a priori and can be one of an
infinite number of ordered states. The effect on the coars-
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ening dynamics is not currently understood and is dis-
cussed further below.

Substantial work has been done on the pattern coarsen-
ing in relaxational systems that occurs as domains of
uniform stripes compete and grow in size. In this case,
the dynamics can be understood in terms of the mono-
tonic decrease of the free energy. This provides a useful
tool to look for important dynamical interactions and has
been exploited for the case of diblock copolymers [5].
Experiments using diblock copolymers have been per-
formed in extremely large aspect ratios with more than
105 microdomain repeat spacings, effectively eliminating
boundary effects, and for durations long enough to reach
striped states free of defects. The orientational correlation
length, �o, was found to grow in time as �o � t1=4, and the
dominant coarsening mechanism was determined to be
annihilation events involving disclination quadrupoles.

The Swift-Hohenberg (SH) equation, which is relaxa-
tional, and the generalized Swift-Hohenberg (GSH)
equation, which can be either relaxational or nonrelaxa-
tional depending on the choice of the nonlinearity, have
been studied as model systems for the coarsening of
striped patterns in periodic geometries. For the SH equa-
tion a measure of the translational correlation length, �T ,
was found to vary as t1=5 in the absence of noise and as t1=4

in the presence of noise [6], although recent deterministic
simulations performed close to threshold in the absence of
noise give t1=3 [7]. A study of the SH equation and a
nonrelaxational GSH equation found that the domain
size scaled as t1=5 in all cases [8]. However, the nonrelaxa-
tional results gave an orientational length scale given by
�o � t1=2, and the stripe patterns were found to evolve
toward a final wave number, qd, where isolated disloca-
tions become stationary.
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FIG. 1. The mid-depth temperature field, T, at times t � 16,
32, 64, and 128, panels (a)–(d), respectively. The light regions
indicate a warm rising fluid, and the dark regions indicate a
cool descending fluid. Simulations parameters: � � 0:27, � �
57, and � � 1:4.
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FIG. 2. The scaling property of the azimuthally averaged
structure factor S�q; t	 is illustrated by the data collapse found
at various times when plotting S�q; t	=t� versus �q� hqi	t�

with � � 0:12.
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To date, experiments on the coarsening dynamics of a
far-from-equilibrium, spatially extended nonrelaxational
system have been performed only for the electroconvec-
tion of a liquid nematic crystal [9]. Here the pattern is
asymmetric, with convection rolls forming zig and zag
rolls at an angle �	 relative to the nematic anisotropy
direction. For this system, using isotropic measures of the
domain growth, it has been found that the domains grow
as t1=5 and the domain wall length grows as t1=4 [9].

Coarsening experiments on Rayleigh-Bénard convec-
tion in a large-aspect-ratio container have not been con-
ducted. A considerable experimental difficulty is in
achieving a spatially uniform initial state composed of
random perturbations; slight variations in the apparatus
influence the initial pattern emerging from the disorder.
Numerical simulations are free of these difficulties, how-
ever, allowing us to investigate the coarsening dynamics
of Rayleigh-Bénard convection in an experimentally
realistic geometry for the first time.

Discussion.—We study numerically, using a parallel
spectral element code [10], Rayleigh-Bénard convection
in a large-aspect-ratio cylindrical domain (see [11] for
related applications). The aspect ratio is a measure of the
spatial extent of the system and for a cylindrical geometry
is defined as � � r=d, where r is the radius of the con-
vection cell and d is the depth. The Boussinesq equations
that govern the dynamics of the velocity ~u, temperature
T, and pressure p, fields are

��1�@t � ~u � ~r	 ~u � � ~rp� RTẑ�r2 ~u;

�@t � ~u � ~r	T � r2T; ~r � ~u � 0;

where time differentiation is given by @t, ẑ is a unit vector
in the vertical direction, � is the Prandtl number, and R is
the Rayleigh number. The equations are nondimensional-
ized using the layer depth d, the vertical diffusion time
for heat �v, and the constant temperature difference
across the layer 	T, as the length, time, and temperature
scales, respectively. All bounding surfaces are no slip, the
lower and upper surfaces (z � 0; 1) are held at constant
temperature, and the sidewalls are perfectly insulating.

We study the pattern evolution from small random
thermal perturbations, �T � 0:01, in a large-aspect-ratio
domain, � � 57, containing a fluid with � � 1:4. We
present results for two simulations at � � 0:27 [where
� � �R� Rc	=Rc is the reduced Rayleigh number and
Rc is the critical Rayleigh number] that differ only in
the particular choice of random initial conditions.
Figure 1 illustrates the time evolution of the temperature
field at mid-depth for these parameters. At early times
[see Fig. 1(a)] there are present many small patches of
arbitrarily oriented rolls, as well as many defects, includ-
ing disclinations, dislocations, grain boundaries, spirals,
wall foci, and targets. As time progresses, the pattern
coarsens into larger domains of stripes with fewer defects
mostly dominated by wall foci, grain boundaries, and
isolated dislocations.
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A measure of the translational order is the translational
correlation length, �T , which is calculated from the time
variation of the second moment of the azimuthally aver-
aged structure factor S�q; t	. The structure factor is the
square of the modulus of the spatial Fourier transform of
the temperature perturbation field at mid-depth. The scal-
ing property of S�q; t	 is illustrated in Fig. 2 by the data
collapse at various times by plotting S�q; t	=t� versus
�q� hqi	t� for � � 0:12 (where hqi is the average wave
number). The data collapse occurs over a range of 4 &

t & 256 indicating a window of time over which the
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FIG. 3. (a) The translational correlation length �T as a func-
tion of time. The dashed line is a power-law fit yielding a
scaling of t0:12. The dash-dotted line illustrates a scaling of t1=5

for reference. (b) The orientational correlation length �o as a
function of time. The dashed line is a power-law fit yielding a
scaling of t0:54. For reference the dash-dotted line shows the
time variation of �T � t0:12 from panel (a) to illustrate the two
different length scales.

FIG. 4. Contour plots illustrating the spatial distribution of
defects: panel (a) t � 16 and panel (b) t � 128. Defect regions
are black, and defect-free regions are white. The ratio of the
defect containing area to the total area yields a measure of the
defect density �d, which is shown as a function of time in
Fig. 5. The patterns corresponding to these defect distributions
are displayed in Figs. 1(a) and 1(b).
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FIG. 5. The defect density, �d, as a function of time. A
power-law fit to the data is shown by the dashed line with
�d � t�0:45.
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scaling ansatz is valid. For large times t > 256, the scal-
ing breakdown indicates the influence of lateral bounda-
ries and finite size effects. As shown in Fig. 2, the
collapse of the S�q; t	 curves at early time t � 4 (squares)
and late time t � 256 (circles) is beginning to show some
deviation. In the discussion that follows, we consider the
dynamics only in the scaling regime. The translational
correlation length is shown in Fig. 3(a). The scaling of
�T � t0:12 indicates very slow growth when compared
with the predominance of t1=4 and t1=5 scalings found in
a variety of other systems as already discussed. Similar
results are obtained from measuring the time variation of
the inverse half-width at half-height of S�q; t	.

The time dependence of local orientational order is
measured from the time variation of the orientational
correlation length, �o. This is determined by calculating
the second moment of the azimuthally averaged Fourier
intensity of Re�e2i	
, where 	 is the local angle of the
stripes [12]. As shown in Fig. 3(b), �o � t0:54, which
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grows faster than �T , as shown by the long dashed line,
suggesting the presence of an additional length scale in
the coarsening dynamics.

The spatial distribution of defects is quantified in Fig. 4
by highlighting regions of large local curvature, �, where
� � ~r � k̂ (k̂ � ~k=jkj is the local unit wave vector [12]).
There are many defects early in the time evolution; how-
ever, as time progresses, most of the defects are annihi-
lated, leaving domain walls and isolated dislocations. A
defect density, �d, can be defined as the ratio of the total
area covered by defects. The time evolution of �d is shown
in Fig. 5 and exhibits a scaling of �d � t�0:45. For a
pattern dominated by isolated defects exhibiting isotropic
growth in all directions, which is approximately valid for
the very early time evolution (t & 10), this suggests a
scaling of the domain size as �d � t0:23. On the other
hand, for patterns composed of defect lines (or grain
boundaries) of unit width, which is relevant for later
times (t * 10), �d is the length of the line suggesting a
scaling of �d � t0:45.
064503-3



t

〈q
〉

0 100 200
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

Initial condition 1
Initial condition 2

qf

qd

FIG. 6. Wave number variation as a function of time. The
wave number selected by zero velocity dislocations qd � 2:81
[13] and the wave number selected by patches of curved
convection rolls qf � 3:11 [14].
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The long-time asymptotic state of a convection pattern
free of the influence of lateral boundaries remains poorly
understood. Our results suggest that the pattern evolves
toward the wave number where isolated dislocations be-
come motionless, qd (see Fig. 6). The values of qd have
been obtained, for the fluid parameters of interest here,
both experimentally and numerically by measuring the
climb velocity of a dislocation in a background of either
straight parallel rolls or a giant one-armed spiral and
interpolating to find the wave number of zero climb
velocity [13]. For reference, the wave number selected
by patches of curved rolls or foci, qf, is also shown [14].
The wave number qf is also where D? ! 0 in the absence
of mean flow (D? is the diffusion coefficient perpendicu-
lar to the wave vector in the Pomeau-Manville phase
equation [15]). For large times where the effects of the
boundaries are important 256 & t & 500 we find a slow
increase in the wave number indicating that qf may be
selected for at very long times by the prevalence of
curved rolls from large wall foci. In a similar calcula-
tion for slightly more supercritical conditions, � � 0:46,
the pattern wave number evolves, for times in the scal-
ing regime, to q � 2:58 where qd � 2:63, and qf � 3:09,
again suggesting a selected wave number of qd. These
results indicate that the wave number selected in large-
aspect-ratio domains is qd in agreement with the pre-
dictions made from numerical simulations of the GSH
equations [8].

Conclusion.—We have investigated domain coarsening
and wave number selection in a nonrelaxational, ex-
tended, and far-from-equilibrium system by performing
full numerical simulations of Rayleigh-Bénard convec-
tion with experimentally realistic boundary conditions.
In nonrelaxational systems the long-time asymptotic state
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is unknown, thus raising the question of wave number
selection and the issue of how this might affect the
coarsening dynamics. For Rayleigh-Bénard convection
we find that multiple length scales are necessary to de-
scribe the pattern evolution in time. The coarsening dy-
namics involve the complicated evolution of many types
of defects, making it difficult to identify dominant coars-
ening mechanisms responsible for the observed scaling
exponents. Further insight could be gained by studying
defect interactions in simpler prescribed situations. We
also find that the pattern selects the wave number where
isolated dislocations become stationary, suggesting that
this may be the wave number selected from random
initial conditions in the absence of influences from the
lateral boundaries.
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