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Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence
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The statistical properties of velocity and acceleration fields along the trajectories of fluid particles
transported by a fully developed turbulent flow are investigated by means of high resolution direct
numerical simulations. We present results for Lagrangian velocity structure functions, the acceleration
probability density function, and the acceleration variance conditioned on the instantaneous velocity.
These are compared with predictions of the multifractal formalism, and its merits and limitations are

discussed.
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Understanding the Lagrangian statistics of particles
advected by a turbulent velocity field, u(x, ), is important
both for its theoretical implications [1] and for applica-
tions, such as the development of phenomenological and
stochastic models for turbulent mixing [2]. Recently,
several authors have attempted to describe Lagrangian
statistics such as acceleration by constructing models
based on equilibrium statistics (see, e.g., [3—5], critically
reviewed in [6]). In this Letter we show how the multi-
fractal formalism offers an alternative approach which is
rooted in the phenomenology of turbulence. Here, we
propose a derivation of the Lagrangian statistics directly
from the Eulerian statistics.

In order to obtain an accurate description of the par-
ticle statistics it is necessary to measure the positions,
X(r), and velocities, v(r) = X (1) = u(X(¢), 1), of the par-
ticles with very high resolution, ranging from fractions of
the Kolmogorov time scale, Ty tO multiples of the
Lagrangian integral time scale, 7;. The ratio of these
time scales, T,/ Ty, gives an estimate of the microscale
Reynolds number, R,, which may easily reach values of
order 10* in laboratory experiments. Despite recent ad-
vances in experimental techniques for measuring
Lagrangian turbulent statistics [7-9], direct numerical
simulations (DNS) still offer higher accuracy albeit at a
slightly lower Reynolds number [10-13]. In this Letter
we are concerned with single particle statistics, that is,
the statistics of velocity and acceleration fluctuations
along individual particle trajectories. Here, we analyze
Lagrangian data obtained from a recent DNS of homoge-
neous isotropic turbulence [14] which was performed on
5123 and 1024° cubic lattices with Reynolds numbers up
to R, ~280. The Navier-Stokes equations were inte-
grated using fully dealiased pseudospectral methods for
a total time T = T, . The flow was forced by keeping the
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total energy constant in the first two wave number shells
(for more details, see [14]). Approximately 2 X 10°
Lagrangian particles (passive tracers) were released into
the flow once a statistically stationary velocity field had
been obtained. The positions and velocities of the par-
ticles were stored at a sampling rate of 0.077,. The
Lagrangian velocity was calculated using linear interpo-
lation. Acceleration was calculated both by following the
particle and by direct computation from all three forces
acting on the particle—the pressure gradients, viscous
forces, and the large scale forcing. The two measurements
were found to be in very good agreement. The Lagrangian
statistics were calculated by averaging over all particle
trajectories and over all time.

It is well known that Lagrangian velocity increments,
8,v=v(t + 7) — v(r), are quasi-Gaussian for time lags
7 of order T; but become increasingly intermittent at
higher frequencies [8]. The resulting acceleration statis-
tics exhibit some of the most extreme fluctuations of any
known quantity, with accelerations, a(f), up to 80 times
its root mean square value, a,n,, possible [7]. The most
natural way to quantify such phenomena is via probabil-
ity density functions (PDFs) of the Lagrangian velocity
increment, P(5,v), and acceleration, P(a). The fre-
quency of extreme events is reflected in the size of the
tails of the PDFs and thus in the high order moments.
These can be analyzed with the aid of Lagrangian veloc-
ity structure functions S,(7) = ((8,v)?), where §,v char-
acterizes the magnitude of a component of the velocity
increment. Since the flow here is isotropic the choice of
component is immaterial.

It has long been recognized that Eulerian velocity fluc-
tuations in the inertial subrange exhibit anomalous scal-
ing: ((8,u)?) = {(u(x + r) — u(x))?) ~ rée») [15], where
r is the spatial separation. On the basis of simple phe-
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nomenological arguments, we may expect the Lagrangian
velocity fluctuations to exhibit a power law behavior for
time scales within the inertial subrange too. We may
therefore assume that §,(7) ~ 74(P) with T, L TLTy.
Anomalous scaling is often interpreted as the result of the
intermittent nature of the energy cascade. Among the
simplest stochastic models able to reproduce both quali-
tatively and quantitatively such intermittency are those
based on the multifractal formalism. This has been suc-
cessfully used to explain Eulerian statistics such as struc-
ture functions [15-17] and velocity gradients [18,19] and
Lagrangian statistics such as the acceleration covariance
[20] and the velocity statistics [21,22]. The aim of this
Letter is to compare predictions of the multifractal for-
malism for Lagrangian velocity structure functions, the
acceleration PDE and the acceleration variance condi-
tioned on the instantaneous velocity with those obtained
from the DNS data. The Lagrangian multifractal predic-
tions are derived from the multifractal formalism in the
Eulerian reference frame without any additional free
parameters.

In the multifractal formalism the global scale invari-
ance of Kolmogorov’s theory (K41) becomes a local scale
invariance. Namely, the turbulent flow is assumed to
possess a range of scaling exponents I = (Apin, Amax)-
For each h € I there is a set §;, € R? of fractal dimension
D(h) such that, in the limit of small r, &§,u(x)~
uo(r/Lo)"™ for x € §,,. Here u is the large scale fluctu-
ating velocity and L, is the integral length scale. For
small values of uy, we are in the laminar part of the
flow for which a multifractal description is not appropri-
ate. From this local scaling law, the scaling properties of
the Eulerian structure function can easily be derived by
integrating over all possible h [15]: ((8,u)?) ~ (ul) X
[ dh(r/Ly)tP+3-P®)_ The factor (r/Lg)*> P™ is the
probability of being within a distance of order r of the
set S, of dimension D(4). A saddle point approximation
in the limit r << L then gives the scaling exponents

{p(p) = i%f[hp +3—D(h)] (1)

Among possible empirical formulas for the scaling ex-
ponents, {z(p), we choose the one of She and Lévéque
[23]. Using this it can be shown that

D(h) =1+ p*(h)(h — §) + 27" W73, 2

where p*(h) = [3/In(2/3)]In{(1 — 94)/[61n(2/3)]} is the
value of p which minimizes the inverse of (1).

The velocity fluctuations along a particle trajectory
may be considered as the superposition of different con-
tributions from eddies of all sizes. In a time lag 7 the
contributions from eddies smaller than a given scale, r,
are uncorrelated and one may then write §,v ~ §,u. We
assume that r and 7 are linked by the typical eddy
turnover time at the given spatial scale, 7, ~ r/d,u.
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Therefore, in the multifractal terminology,

Lh
S,v~&u  T~=2p0 3)
Vo

The presence of fluctuating eddy turnover times is the
only additional complication introduced by the multi-
fractal formalism in the Lagrangian reference frame.
Using (3) we can now derive a prediction for the
Lagrangian velocity structure function [22]:

S,(7) ~ (b ﬁ 3 dh(T—TL

where the factor (7/T;)B~PWV1=h) jg the probability of
observing an exponent 4 in a time lag 7. The exponents
{1 (p) then follow from a saddle point approximation in
the limit 7 < T :

>

)[hP+3—D(h)]/(1—h)

“

G(p) = igf(M)

1—nh

In Fig. 1 the results for §,(7) calculated from the DNS
are presented. Although the scaling in a log-log plot is
reasonable, a more detailed inspection of the logarithmic
local slopes, dlog$ ,(7)/dlogS,(7), displays a deteriora-
tion of scaling properties at small times. This is due to the
presence of a strong saturation effect for time lags, 7 €
[7,, 107,]. This may be explained in terms of trap-
ping events inside vortical structures [14], a dynamical
effect which may strongly affect scaling properties and
which a simple multifractal model cannot capture. For
this reason, scaling properties are recovered using
only ESS [24] and for large time lags, 7 > 107,,. In this
interval a satisfactory agreement with the multifractal
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FIG. 1. Extended self-similarity (ESS) plot of the

Lagrangian velocity structure function S,(7) versus S,(7),
both normalized by the value of the structure function at the
Kolmogorov scales. Symbols refer to the DNS data for p =
8, 6, 4 from top to bottom. Lines have slopes {;(p)/ ;. (2) given
by the multifractal prediction (4). In the inset we show the
logarithmic local slopes of the DNS data and the multifractal
predictions versus the time lag, 7/7,,.
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prediction (4) is observed, namely, £;(4)/{,.(2) = 1.71;
£(6)/4.(2) =2.16; £,(8)/£.(2) = 2.72.

Similar phenomenological arguments can be used to
derive predictions for the acceleration statistics. The ac-
celeration at the smallest scales is defined by

57,71}

&)

a

Tn

As the Kolmogorov scale, 1, fluctuates in the multifractal
formalism [15], n(h, vy) ~ (vLl/ve)/0*M, so does the
Kolmogorov time scale, 7,(h, vy). Using (3) and (5)
evaluated at 7, we get, for a given & and vy,

a(h, vy) ~ V(2h71)/(1+h)v(3)/(1+h)La3h/(l+h)_ (6)

The PDF of the acceleration can be derived by integrating
(6) over all # and v,, weighted with their respective
probabilities, [7,(h, vo)/Ty(ve) 3" PWVI=1 and P(uv).
The large scale velocity PDF is reasonably approximated
by a Gaussian [15]: P(vy) = exp(—v3/203)/\2mos |
where o2 = (v3). Integration over v, gives

Pla) ~ f dhalh=5+DY/3 ,[7-2h=2DM)/3 P +h=3
hel

(N

g20+m)/3 V2(1—2h)/3L%h>

X exp(—
2072

From (7) we can derive the Reynolds number depen-
dence of the acceleration moments [20,25]. For example,
in the limit of large R, the second order moment is given
by (a®) = RX, where yx = sup,{2[D(h) —4h —1]/(1 +
h)}. Thus, we find that y = 1.14, which differs slightly
from the K41 scaling, y%*' =1 (see [25-27] for a dis-
cussion on departures from K41 scalings in the context of
acceleration statistics). In order to compare the DNS data
with the multifractal prediction we normalize the accel-
eration by the rms acceleration, o, = (a2)!/2. In terms of
the dimensionless acceleration, @ = a/o,, (7) becomes

Pa) ~ f alh=5+D)/3 Ry exp<_ % ~2(1+h)/3Rf\(h)>dh,
hel

®)

where y(h) = x[h — 5+ D(h)]/6 + 2[2D(h) + 2h —
71/3 and z(h) = x(1 + h)/3 +4(2h — 1)/3. We note
that (8) may show an unphysical divergence for a = 0
for many multifractal models of D(h). For example, with
D(h) given by (2) we cannot normalize P(a) for h <
h. = 0.16. This shortcoming is unimportant for two
reasons. First, as already stated, the multifractal formal-
ism cannot be trusted for small velocity and acceleration
increments because it is based on arguments valid only to
within a constant of order 1. Thus, it is not suited for
predicting precise functional forms for the core of the
PDE Second, values of & < h, correspond to very intense
velocity fluctuations which have never been accurately
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tested in experiments or by DNS. The precise functional
form of D(h) for those values of £ is therefore unknown.
Thus, we restrict & to be in the range . < h = h,,,. For
hmax We take the value of & which satisfies D’(h) = 0; that
i8S, I = 0.38.Values of h > h,,, affect only the peak of
the velocity distribution which we have already excluded
from our discussion. We also restrict |a| to lie in the range
[dmin’ OO) with &min = 0(1)

In Fig. 2 we compare the acceleration PDF computed
from the DNS data with the multifractal prediction (8).
The large number of Lagrangian particles used in the
DNS (see [14] for details) allows us to detect events up to
800 ,. The accuracy of the statistics was improved by
averaging over all directions. Also shown in Fig. 2 is

the K41 prediction for the acceleration PDF PX4!(g) ~

5’5/9R;1/2 exp(—a®/®/2) which can be recovered from
(8) with h = 1/3, D(h) = 3, and ¥*! = 1. As is evident
from Fig. 2, the multifractal prediction (8) captures the
shape of the acceleration PDF much better than the K41
prediction. What is remarkable is that (8) agrees with the
DNS data well into the tails of the distribution—from the
order of 1 standard deviation, o, up to order 70c,. This
result is obtained with D(h) given by (2). We emphasize
that the only degree of freedom in our formulation of
P(a) is the minimum value of the acceleration, d,;,, here
taken to be 1.5. In the inset of Fig. 2 we make a more
stringent test of the multifractal prediction (8) by plotting
a*P(a) and which is seen to agree well with the DNS data.

From (6) it is also possible to derive a prediction for the
acceleration moments conditioned on the local—instan-
taneous—velocity field vy: {a"|vy). Such quantities are
important in the construction of Lagrangian stochastic
models of turbulent diffusion [2]. For the conditional

FIG. 2. Log-linear plot of the acceleration PDE The crosses
are the DNS data, the solid line is the multifractal prediction,
and the dashed line is the K41 prediction. The DNS statistics
were calculated along the trajectories of 2.0 X 10° particles
amounting to 1.06 X 10" events in total. The statistical un-
certainty in the PDF was quantified by assuming that fluc-
tuations grow like the square root of the number of events.
Inset: @*7P(a) for the DNS data (crosses) and the multifractal
prediction.
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FIG. 3. Log-log plot of the conditional acceleration variance.
The crosses are the DNS data, the solid line is the multifractal
prediction, and the dashed line is the prediction of [25]. The
DNS data are the absolute acceleration conditioned on the
absolute velocity. Statistical uncertainty was estimated by
dividing the samples into five subensembles. Inset: the condi-
tional acceleration variance scaled by the multifractal predic-
tion, {a?|v)/v*>’, and the prediction of [25], (a®|v)/v®, both
normalized by o72.

acceleration variance we get
<az|v0>~f A L1 H4h =D/ +h) 3+ D/(1+h)
hel 0
% LE)D(h)—6h—3]/(l+h). ©)

In the limit » << 1, a saddle point approximation gives
(a®lvg) o v PWVIED = here o = inf,{[1 + 4h —
D(h)]/(1 + h)} and 4 is the value of # which minimizes
the exponent of ». Thus, we find that (a*|v,) < v§?'.

In Fig. 3 we plot (a?|v), normalized by the acceleration
variance, versus v>/o2. The relatively large error that can
be seen in the DNS conditional acceleration statistics for
large values of v?/o?2 reflects the rarity of these events.
However, in agreement with [25] a clear trend is evident
that, for large velocities, the acceleration magnitude de-
pends strongly on the magnitude of the velocity. (The
vector acceleration and velocity can easily be shown to
be uncorrelated for stationary turbulence [25].) Also
shown in Fig. 3 are the multifractal prediction and the
prediction of [25] based on a dimensional argument
pertaining to the vorticity, namely, that (a?|v) o« v°.
Although statistical noise prevents us from making a
convincing claim, the multifractal prediction agrees bet-
ter with the DNS data.

In conclusion, we have shown that the multifractal
formalism predicts a PDF for the unconditional accelera-
tion which is in excellent agreement with the DNS data.
Compared with other models [3—5], we have used a very
simple phenomenological assumption to derive the form
of the PDE We have assumed only that the Lagrangian
velocity increment is related to the Eulerian velocity
increment by (3) and that the large scale fluctuating
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velocity is Gaussian. The only adjustable parameter in
our formulation is the value of d,;,, which does not have a
sensitive effect on the results. Lagrangian turbulence also
allows a detailed check of the multifractal formalism for
spatiotemporal objects as discussed in [28,29]. Work on
this will be reported elsewhere.
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