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Intermittency and the Passive Nature of the Magnitude of the Magnetic Field
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It is shown that the statistical properties of the magnitude of the magnetic field in turbulent
electrically conducting media resemble, in the inertial range, those of passive scalars in fully developed
three-dimensional fluid turbulence. This conclusion, suggested by the data from the Advanced
Composition Explorer, is supported by a brief analysis of the appropriate magnetohydrodynamic
equations.
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FIG. 1. Energy spectrum of the magnitude B �
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magnetic field B in the solar wind plasma.
In recent years, the problem of turbulent advection and
diffusion of scalar and vector fields, both passive and
active, has received renewed attention (see, for instance,
Refs. [1–4]). Here, we study one of the most interesting
examples in this family, namely, the case of magneto-
hydrodynamics (MHD), in which the magnetic field fluc-
tuation B is described by the equation

@B
@t

� r� �v�B� � �r2B; (1)

v being the turbulence velocity and � the magnetic dif-
fusivity. Equation (1) can be regarded as a vector ana-
logue of the advection-diffusion equation

@�
@t

� ��v � r���Dr2� (2)

for the evolution of a passive scalar � subject to molecular
diffusivity D. Aside from the fact that B is a vector and �
a scalar, the equations are different also because v in
Eq. (1) can be affected quite readily by the feedback of
the magnetic field B. Our interest here is to explore the
extent of similarities, despite these obvious differences.
While the idea of exploiting formal analogies between(1)
and (2) is not new (see [5] and references cited there on
the MHD/hydrodynamic analogy), the characterization
of inertial-range similarities of the magnetic and passive
scalar fields does not seem to have been attempted before.

Solar wind is an excellent natural ‘‘laboratory’’ for the
MHD problem. It is known that the statistical properties
of velocity fluctuations in solar wind are remarkably
similar to those observed in fluid turbulence [6]. It is
also known that the plasma power spectra of the magnetic
field and velocity fluctuations often contain an ‘‘inertial’’
range with a slope of approximately �5=3 (see Refs. [6–
8]. The spectrum for individual components of B varies
from one component to another, and on the large scale
features that vary across the 11 yr solar cycle and other
large-scale anisotropies. The transverse variances of vec-
tor B can contain an order of magnitude more energy than
the parallel variance. Such issues also enter discussions of
0031-9007=04=93(6)=064501(4)$22.50 
the structure of large amplitude Alfvén waves and their
effect on B [9–11].

Statistical properties of the magnitude B �
������
B2
i

q
in the

inertial range of scales are expected to be more universal
(as is rather common for the inertial range properties [6]),
and we shall study these properties from the data ob-
tained from Advanced Composition Explorer (ACE) sat-
ellite magnetometers for the year 1998. The sun was quiet
in this period, the data are statistically stable, and the
scaling spectrum with �5=3 slope is quite typical (see
Fig. 1). This slope is identical to that observed for passive
scalar fluctuations in fully developed three-dimensional
fluid turbulence [12]. Spurred by this inertial-range simi-
larity between � and B, we are motivated to explore
further the properties of the magnitude B and compare
them with those of the passive scalar.

For this purpose, we consider the scaling of structure
functions

hj�B
j
pi � 
�p ; (3)

where �B
�B�t�
��B�t�. The exponent �2 is directly
related to the spectral exponent (for our case �2 
 5=3�
1 � 2=3 [12]).
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FIG. 2. Structure functions of magnetic field magnitude in
the solar wind plasma as measured by the ACE magnetometers
in nano-Tesla for the year 1998 (4 min averages).
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Figure 2 shows the scaling of structure functions for
the B in the solar wind data. Slopes of the least-square fits
in the apparently scaling region provide us the exponents
�p; these are shown in Fig. 3 as circles. Triangles in the
figure indicate experimental values obtained for tempera-
ture fluctuations in the atmosphere [13]. The other experi-
mental data [14,15] are in agreement with each other to
better than 5%. The ? symbols are for the passive scalar
field obtained by numerically solving the advection dif-
fusion in three-dimensional turbulence [16]. It is clear
that the exponents for the passive scalar data are in
essential agreement with those for the magnitude fluctua-
tions of the magnetic field.

One can analyze the solar wind data somewhat differ-
ently using the notion of the extended self-similarity
(ESS). Since, empirically, the fourth-order exponent is
quite closely equal to unity for magnitude fluctuations of
the magnetic field, i.e.,

hj�B
j
4i � 
; (4)

we can extend the scaling range (and consequently im-
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FIG. 3. Scaling exponents (3) calculated for B in the solar
wind (circles) and for the passive scalar in the atmospheric
turbulence (triangles [13]), and in the direct numerical simu-
lation of three-dimensional fluid turbulence (stars [16])
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prove the confidence with which those exponents are
determined) by redefining them as

hj�B
j
pi � hj�B
j

4i�p : (5)

Figure 4 shows the ESS dependence (5). The slopes of
the least-square fits provide us with the ESS scaling
exponents �p, shown in Fig. 5 as circles. The other sym-
bols have remained unchanged from Fig. 3. The shift of
the exponents �p in comparison to those from ordinary
self-similarity is about 4%, but the scaling interval for
ESS is considerably larger. This increased scaling range
for ESS is well known in other contexts [17].

The results of Figs. 3 and 5 suggest that at least up to
the level of the fourth-order the scaling exponents for the
passive scalars and for the magnitude of the magnetic
field are essentially the same. This is both surprising and
thought provoking, and needs to be understood. To this
end, let us return to Eq. (1) and specialize [18], for
simplicity, to the incompressible case (r � v � 0).
Equation (1) can then be rewritten as

@B
@t

� ��v � r�B� �B � r�v� �r2B: (6)

Let us now consider the equation for the magnitude B of
the magnetic fluctuations given by B � Bn, where n is the
unit vector with its direction along B: ni � Bi=B.
Multiplying both sides of Eq. (6) by the vector n and
taking into account that n2i � 1 we obtain

@B
@t

� ��v � r�B� �r2B� �B; (7)

in which the ‘‘friction stretching’’ (or the production)
coefficient � in the last term has the form

� � ninj
@vi

@xj
� �

�
@ni
@xj

�
2
; (8)

with the indices i and j representing the space coordi-
nates, and the summation over repeated indexes is as-
sumed. The first term on the right-hand side of Eq. (8) is
crucial for any dynamo effect.
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FIG. 4. Extended self-similarity (ESS) of the magnetic field
magnitude in the solar wind plasma.
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FIG. 5. The same as in Fig. 3 but using the ESS method (5)
for B.
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If the statistical behaviors of ��
 and �B
 are to be
similar, as suggested by Figs. 3 and 5, we should be able to
observe the underlying similarity in Eqs. (2) and (7). The
major difference is the presence in Eq. (7) of the produc-
tion term �B. However, given the empirical indications
that �B
 and ��
 possess the same scale-similarity in the
inertial range, it would seem that there must be circum-
stances under which the � term in Eq. (7) is small. What
are those circumstances?

The second term in � is assured to be small because the
smallness of the magnetic diffusivity �, but difficulties
may arise from the first term on the right-hand side of
Eq. (8). As already remarked, the MHD turbulence is
usually anisotropic with respect to the large scale mag-
netic field [19] and that the parallel gradients are sup-
pressed relative to the perpendicular gradients. While this
feature can significantly diminish the first term on the
right-hand side of Eq. (8) in the large scales, the real issue
for us here is the effective cancellation in the first term in
the inertial range.

To address this issue, let us consider the following
conditional average of Eq. (7): fix the magnitude B in
the vector field B � Bn and perform the average over all
realizations of the direction vector field n permitted by
the vector Eq. (6). Let us denote this ensemble average as
h. . .in, and call this directional averaging. From the
definition, this averaging procedure does not affect B
itself, but affects the velocity field v and the coefficient
� in Eq. (7). We thus obtain

@B
@t

� ��hvin � r�B� �r2B� h�inB: (9)

Two comments are needed. First, the conditional average
indicated by h. . .in and the global average indicated by
h. . .i are quite different; for this reason, the quantity B in
(9) remains a fluctuating variable. Second, the solutions
of the original Eq. (6) satisfy Eqs. (7) and (9), but not all
possible formal solutions of Eqs. (7) and (9) satisfy
Eq. (6); similarly, not all formal solutions of Eq. (9)
satisfy Eq. (7) while all solutions of Eq. (7) do satisfy
064501-3
Eq. (9) . Restricting comments to the relationship between
Eqs. (7) and (9), the solutions of the two equations are the
same only if the initial conditions are the same and if
realizations of hvin and of h�in, related to these initial
conditions by the conditional average procedure, are ob-
tained from solutions applicable to Eq. (7) (cf. Ref. [20]
where the author used particular ensemble averages for
the evolution of B).

Returning now to Eq. (9), the conditionally averaged
velocity field hvin may possess statistical properties that
are different from those of the original velocity field v,
and there can be circumstances under which h�in � 0, or
small. If so, the similarity between Eqs. (2) and (9) [and,
consequently, between Eqs. (2) and (7)] can be the basis
for the similarity in statistical properties of their solu-
tions. Let us consider a generic set of conditions, presum-
ably for the inertial range, which can result in
hninj@vi=@xjin � 0. This can be a combination of iso-
tropy, which yields

hninjin � 0�i � j�; hn21in � hn22inhn
2
3in; (10)

and the statistical independence

hninj’in � hninjinh’in; (11)

where ’ � @vk=@xl for arbitrary k and l.
We now use conditions (10) and (11) in the presence of

the incompressibility condition @vi=@xi � 0 and obtain

h�in � ��
��

@ni
@xj

�
2
�
n
: (12)

That is, the difference between the passive scalar equation
(2) and the conditionally averaged equation (9) for B is
reduced to pure ‘‘friction’’ with the friction coefficient
given by (12). For small values of � this term does not
affect the scaling properties of B in the inertial range
[21].

One can also seek more general conditions under which
the stretching part from the conditionally averaged coef-
ficient h�in becomes negligible. For instance, it is not
necessary for conditions (10) and (11) to be satisfied for
all realizations of the magnetic field B, but only for the
subset of realizations that gives the main statistical con-
tribution to the structure functions (3). Let us name this
subset of realizations as I. The structure functions (3)
depend on the statistical properties of the increments with
respect to 
, namely �B
, belonging to the inertial range
of scales. One of the consequences of intermittency is that
the statistical properties of the increments are essentially
different from those of the field B itself. Therefore, the
subset I need not generally coincide with the subset G,
say, that gives the main statistical contribution to the
global average hninj@vk=@xli. This means, in particular,
that the conditions (10) and (11) can be valid for the
inertial range (i.e., for subset I), while globally (i.e., for
subset G) these conditions could well be violated. For
064501-3
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instance, the probability density function (PDF) of pas-
sive scalar fluctuations (not increments) are generically
Gaussian [22], while the PDF of the magnetic fluctuations
in the solar wind to be nearly log-normal [23,24]. In fact,
this last observation goes well with the theoretically
obtained result [25] that if the multiplicative term �B
becomes significant (in a global sense) in equations such
as (7) and (9) and (the term is locally small for our case
anyhow), the effect is to transform a Gaussian distribution
of the solution into a log-normal.

Another useful remark is that the properties of the
spectrum of B can be deduced by proper reductions
two-point PDF of the vector B (for one point statistics
see, for instance, Ref. [26]). Therefore, the statistics of B
cannot be considered an issue independent of n in the
global sense (also locally hvin in Eq. (9) and h�in in
Eq. (12) are still significantly dependent on n). It should
be stressed that we do not use the kinematic approach to
the induction equation; in fact, hvin in Eq. (9) can be
affected by the feedback of the vector magnetic field B.

Finally, although the Letter does not deal with dynamo
effects it is useful to consider very briefly a question of
how and where the analysis would break down if a deri-
vation of the � effect, for instance, was being sought.
Introduction of a significant helical component to the
assumed velocity statistics can result in the breaking of
mirror symmetry. Therefore, the first (nondiagonal) con-
dition in (10) will be violated, while the second (diagonal)
one in (10) will remain intact.

In summary, we have shown that remarkable scaling
similarities exist in the inertial range between the passive
scalar and the magnitude of the magnetic field in MHD
flows. Motivated by this observation, we have derived the
dynamical equation for B and argued that, under circum-
stances governed by Eqs. (10) and (11), dynamical simi-
larity exists between the equations governing the passive
scalar and the magnitude of the magnetic fluctuations.
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as to the ACE Science Center for providing the data and
support, to T. Gotoh for providing Ref. [16] before pub-
lication, and to G. Falkovich, to J. Schumacher, to S.
Vainshtein, and to V. Yakhot for comments.
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