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Experimental Targeting and Control of Spatiotemporal Chaos in Nonlinear Optics
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We demonstrate targeting and control over spatiotemporal chaos in an optical feedback loop
experiment. Different stationary target patterns are stabilized in real time by means of a two
dimensional space extended perturbation field driven by an interfaced computer and applied in real
space to a liquid crystal display device inserted within a control optical loop. The flexibility of the
system in switching between different target patterns is also demonstrated.
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FIG. 1. (a) Experimental setup. Main loop: an extended laser
beam is closed through a nonlinear Kerr-like medium (liquid
crystal optical valve). Instabilities develop in the transverse
plane of the beam. M: mirror, O1: microscope objectives; P1:
pinhole; A: aperture; BS1, BS2: beam splitters; LCLV: liquid
crystal light valve; L1, L2: lenses of focal lens f; FB: fiber
bundle. In our experiment, the effective free propagation length
is 2f� �l1 � l2� � �90 mm. Control arm: O2: microscope
objectives; P2: pinhole; BS3: beam splitter; LCD: liquid crystal
display; L3, L4: lenses. The arrows indicate the local direction
of light propagation. (b) Snapshot of the uncontrolled STC state
obtained for an input intensity I=Ic � 3:2 (Ic being the critical
value for pattern formation from the uniform state to hexa-
gons). The pattern intensity has been coded into a 256 level
gray scale. (c) Space (vertical) time (horizontal) dynamical
evolution of the central vertical line of pixels of Fig. 1(b).
Control of complex dynamics refers to a process
whereby the critical sensitivity of such dynamics to ex-
ternal disturbances is capitalized in order to select a
proper tiny perturbation able to attain a desirable target
behavior. In the last decade, a series of relevant issues
such as stabilizing a given trajectory within an infinite set
of unstable periodic orbits embedded within a chaotic
attractor (control of chaos) or bringing a chaotic trajec-
tory to a small neighborhood of some desired locations in
phase space (targeting of chaos) have been addressed and
solved in both low and high dimensional time-chaotic
dynamics [1].

More recently, the interest switched to implementing
control strategies for the stabilization of space-time-
chaotic dynamics occurring in extended systems. In this
latter framework, some theoretical attempts and numeri-
cal demonstrations have been offered for achieving con-
trol over one and two dimensional patterns [2], coupled
map lattices and arrays of oscillators [3], or relevant
model equations describing universal features of dynam-
ics [4,5].

Reliable experimental control over space-time chaos
(STC) remains however an open problem. In the field of
nonlinear optics, a few experimental demonstrations of
pattern control and targeting have been offered, based on
filtering masks placed in a Fourier plane [6,7]. These
methods provide a nice efficiency for the stabilization
of stationary patterns with simple global symmetries,
but their application to arbitrary target patterns is
strongly limited by the practical difficulty of building
suitable Fourier masks.

In this Letter we show the first experimental evidence
of control of STC based upon a real-space real-time feed-
back technique, which is able to circumvent the above
difficulties, thus allowing stabilization and targeting of
two dimensional stationary patterns with arbitrary sym-
metries and shapes. This is realized by means of pertur-
bations applied in the real space, and in times shorter than
the characteristic time of the system dynamics, so that
patterns of arbitrary complexity can be targeted and
stabilized with good efficiency. We also show that our
control strategy offers dynamical flexibility in switching
0031-9007=04=93(6)=063902(4)$22.50 
from one to another target pattern, without the need of
removing optical components (as, e.g., filters) in the con-
trol loop.

The experimental setup is sketched in Fig. 1(a). It
consists of a main optical feedback loop (MOFL) hosting
a liquid crystal light valve (LCLV) [8], and of an addi-
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tional electro-optic control loop. The latter consists of a
video camera, a personal computer (PC) driving a liquid
crystal display (LCD), and a laser beam which traverses
the LCD before being injected into the MOFL. The LCLV
operates as a Kerr-like medium, i.e., it induces on the
reading light a phase delay proportional to the writing
intensity, over the range of input intensities used in the
experiments here reported. The LCD, operating in trans-
mission, encodes linearly the gray level images output by
the PC, onto the laser beam traversing it.

When the control loop is open, a homogeneous wave is
sent onto the front face of the LCLV, and is reflected
acquiring a spatial phase modulation. The diffractive
propagation of this beam trough the MOFL converts the
phase into amplitude modulations. In these conditions,
the dynamics within the MOFL is described by the equa-
tion [9,10]:
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where 	�x; y� is the phase of the optical beam at the
output of the valve, � is a relaxation time, D a diffusion
coefficient,  the nonlinearity strength of the LCLV, 	0 is
the working reference phase, and Ifb�x; y� is the feedback
intensity impinging at the rear side of the valve.

The feedback intensity is a nonlinear (and nonlocal)
function of the phase 	 [9,10]. On increase of the pump
intensity I, the homogeneous solution destabilizes, result-
ing in hexagonal patterns close to threshold. If the pump
is further increased, regular hexagons lose stability in
favor of space-time-chaotic dynamics [9,11]. Together
with the pump value, another parameter of the utmost
importance is the spatial frequency bandwidth of the
system [7], controlled by the aperture A in Fig. 1. This
aperture is located in a Fourier plane of the MOFL, and
plays a key role in determining the ‘‘level of turbulence’’
of the free-running signal. In Ref. [7], the reduction of the
spatial bandwidth to a value of 1.6 (in units of the dif-
fractive wave number of the system) was, per se, able to
provide a certain degree of control for the hexagonal
patterns. However, in that case the value of the pump
intensity I normalized to its threshold value Ic for the
formation of hexagons was equal to 2, while we here use
3.2. As a result, in our case the simple limitation of the
Fourier bandwidth is not sufficient to stabilize any pat-
tern, as witnessed by Figs. 1(b) and 1(c). In what follows,
we keep the spatial frequency bandwidth fixed at 1.5.

In order to achieve control over the dynamics, a frac-
tion of the beam traveling on the MOFL is extracted and
detected by a video camera, which is interfaced to the PC
via a frame grabber. The computer processes the input
image, and sends a suitable driving signal to the liquid
crystal display device. The LCD transfer function T�x; y�
is the sum of a constant mean transfer coefficient T0, plus
a modulation signal s�x; y�, chosen to be proportional to
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the error signal between the current pattern intensity Ifb
present in the system, and a target pattern IT�x; y�:

s�x; y; t� � ���Ifb�x; y; t� � IT�x; y�	: (2)

The operations performed by the PC include the evalu-
ation of the above error signal, and the calculation of the
cross-correlation between pattern and target. The refresh-
ing time for the above procedure is at most 200 ms, to be
compared to the characteristic time of the pattern dy-
namics (computed from the decay of the autocorrelation
function) which is of the order of the second.

The spatial resolution of the feedback signal is also an
important parameter for control. The diffractive scale of
the system (the size of the structures visible in Fig. 1(b)] is
���������

2�L
p

’ 300 �m (� � 514 nm being the laser wave-
length, and L � 90 mm the free propagation length in
the MOFL). The selected area for control is of 1200�
1200 �m, upon which a control signal of 128� 128 pix-
els is sent. So, a typical (full) wavelength of the pattern is
covered by 35– 40 pixels, which ensure a good resolution.

The LCD is illuminated with a uniform intensity I0,
and the output beam is imaged onto the rear (writing) side
of the valve. Following the above discussion, this beam
consists of a constant term T0I0 that acts in renormalizing
the valve working point 	0 to 	0

0, plus a modulated
controlling beam sI0. The equation of motion when the
control loop is closed is therefore:
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where � � �I0. At an open control loop, for I=Ic � 3:2
the evolution brings the system to display a time evolving,
spatially disordered pattern, where many defects are con-
tinuously created and annihilated within a hexagonal-
like pattern, thus generating STC [11]. A typical snapshot
of the uncontrolled dynamics is reported in Fig. 1(b).
Figure 1(c) reports the space-time dynamical evolution
of the central vertical line in Fig. 1(b), showing how the
uncontrolled dynamics evolves within STC, with a non
stationary complex local dynamics and a decaying spatial
correlation.

Starting from these conditions, three different target
patterns are selected, namely, perfect hexagons, squares,
and a particular snapshot of the uncontrolled dynamical
evolution (Fig. 2, top). Perfect stationary hexagons are a
stable solution close to the pattern formation threshold;
they are destabilized when the pump is increased, result-
ing in the space-time-chaotic dynamics here considered.
Therefore, use of hexagons as a target tests the ability of
the method to control an unstable solution.

On the other hand, using as the target a snapshot of the
uncontrolled dynamics assesses the robustness of the
method to freeze a given natural state of the uncontrolled
063902-2



FIG. 3. Correlation function C�t� (a), (c), (e) and amount of
power p�t� injected within the control arm (b), (d), (f) vs time
(in seconds). The two quantities are defined in the text. In all
cases the continuous line refers to � � 0:4, the dotted line to
� � 0:2, and the dashed line to � � 0:1. (a), (b) the target is a
perfect hexagonal pattern; (c), (d) the target is a snapshot of the
uncontrolled dynamics; (e), (f) the target is a perfect square
pattern. I=Ic ’ 3:2.

FIG. 2. Examples of target patterns (top row), controlled area
in the system at � � 0:4 (center row) and corresponding far
field images (bottom row) for the control trials of a perfect
hexagonal pattern (a), a square pattern (b), and a snapshot of
the uncontrolled dynamics (c).
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dynamics, in the very same spirit as the so-called target-
ing of chaos [1]. Finally, squares are never spontaneously
selected by the system without control, and therefore they
serve us to assess the ability of the control strategy to
force the appearance of an arbitrary symmetry. The re-
sults obtained for � � 0:4 in the three cases are reported
in the center row of Fig. 2, indicating that the control
procedure is successful in all cases.

The bottom row of Fig. 2 shows the far field images of
the controlled dynamics. While hexagonal and square
patterns have a simple global symmetry (thus allowing
for an easy implementation of Fourier filtering tech-
niques, like the one of Ref. [6]), the target STC snapshot
involves the presence of a complicated power spectrum.
The fabrication of Fourier masks reproducing the ampli-
tude and phase of these patterns appears extremely diffi-
cult in experiments.

By acting directly on the near field patterns, our control
method circumvents such practical difficulties, is also
effective in stabilizing complex Fourier patterns, and
therefore configures as the most reliable choice for the
stabilization and targeting of two dimensional stationary
structures with arbitrary symmetries and shapes.

To evaluate quantitatively the control ability of our
method, we use the time-dependent correlation func-
tion C�t� � hIfb�r; t� � IT�r�ir between the instantaneous
pattern and the target one (h. . .ir denotes a spatial aver-
age). We also measure the amount of power p�t� �
�fh�Ifb�r; t� � IT�r�	2irg1=2 injected within the control
arm for controlling the target pattern.
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The correlations vs time are shown in Fig. 3 for in-
creasing values of � for the control task of a perfect
hexagonal pattern (a), a snapshot of the uncontrolled
dynamics (c), and a square pattern (e). At lower values
of � (� � 0:1, 0.2), there is already a partial control of the
dynamics, though several deviations of the patterns
around the target ones still remain. The correlation value
increases with � up to � � 0:4, where a high degree of
control is achieved in all cases. As � increases, the
transient time before reaching control over the target
pattern decreases. On the opposite, when control is
switched off, the relaxing time is determined by the
characteristic time of the STC decorrelation, and is there-
fore independent of �. Simulations performed evolving
Eq. (3) with the set of parameters used in our setup are in
quantitative agreement with the experimental observa-
tions within few percent.

Notice that the maximum correlation is attained for the
case of the STC snapshot. This is due to the fact that in
this case the target pattern is a specific configuration of
the natural evolution of the dynamics. In the cases of
squares and hexagons, instead, the target patterns are
digitally generated trying to reproduce at best the natural
profile of the spots present in the system; but this proce-
dure is intrinsically imperfect, because the exact profile
of the spots is unknown.
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FIG. 4. Correlation function C�t� (see text for definition) vs
time during the sequential control trial at � � 0:4. The target
patterns are a snapshot of the uncontrolled dynamics (10 �
t < 30 sec), a square pattern (50 � t < 70 sec), and a hexago-
nal pattern (90 � t < 110 sec). The dashed line indicates the
switching on/off times. The vertical lines separate the three
domains in time in which a different pattern is taken as target
for the control. In each time domain, the correlation is calcu-
lated using the corresponding target pattern.
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This is the same reason why the asymptotic values of
the power control in Fig. 3(b), 3(d), and 3(f) are increas-
ing function of �. This power is the product of � itself, by
the root mean square of the error signal, and hence it can
go to zero only if the error signal vanishes, which cannot
be the case for target patterns that are only approxima-
tions of the real solutions. Consistently, the control power
needed is substantially lower for the snapshot than for
hexagons and squares; the snapshot indeed represents
rather closely a natural state of the system, being captured
during the spontaneous evolution of the dynamics.
However, also in this case, discretization errors and/or
other experimental imperfections prevent the error signal
from vanishing exactly.

It is worth observing that the correlation when control
is off in Fig. 3(c) does not decay to zero; this is due to the
fact that our uncontrolled STC dynamics gives rise to a
nonzero mean field. This point can be qualitatively appre-
ciated from inspection of Fig. 1(c): the pattern has a
certain degree of ‘‘phase rigidity’’, i.e., even if there are
chaotic fluctuations, bright (dark) areas remain more or
less bright (dark) for most of time. Similar properties
have been observed experimentally and discussed in vari-
ous other cases of space extended systems giving rise to
STC dynamics [12].

Finally, we demonstrate that our control technique is
flexible in dynamically switching between different tar-
get patterns. For this purpose, we prepare a time-
dependent target pattern formed by the ordered sequence
of a snapshot of the uncontrolled dynamics, a square
pattern and a hexagonal pattern, each one presented to
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the system for a time T � 20 sec, and intermingled with
periods of T � 20 sec of time in which the system is left
uncontrolled to reset the original state of STC. The results
are shown in Fig. 4, where one sees that the system is able
to attain each one of the target patterns in the sequence
for the same value of � � 0:4, as well as to switch
between the different patterns. Notice that each target
pattern in the sequence produces a different state in the
correlation, as in Fig. 2. The maximal correlation is again
obtained for the snapshot of the uncontrolled dynamics,
since this pattern represents a specific state compatible
with the uncontrolled dynamics.
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