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How to Measure Squeezing and Entanglement of Gaussian States without Homodyning
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We propose a scheme for measuring the squeezing, purity, and entanglement of Gaussian states of
light that does not require homodyne detection. The suggested setup needs only beam splitters and
single-photon detectors. Two-mode entanglement can be detected from coincidences between photo-
detectors placed on the two beams.
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The recent rapid development of quantum information
theory has largely stimulated research on nonclassical
states of light, with the main focus on the generation of
the entangled states of light that are required for tasks
such as quantum teleportation, dense coding, or certain
types of quantum key distribution protocols. A particu-
larly promising approach consists in processing quantum
information with continuous variables [1], where the
quantum information is encoded into two conjugate
quadratures of the quantized mode of the optical field.
The main advantage of this approach is that many proto-
cols can be implemented by processing squeezed light
into linear optical interferometers followed by measure-
ments with highly efficient photodiodes [1]. Such experi-
ments can be described in terms of Gaussian states which
thus play a central role in continuous-variable quantum
information processing. In particular, squeezed Gaussian
states provide the necessary source of entanglement. The
squeezing is usually observed with the use of a balanced
homodyne detector, where the signal beam is combined
with a strong local oscillator (LO) providing a phase
reference [2]. The observed quadrature fluctuations de-
pend on the relative phase between the LO and the signal.
The maximal squeezing of the signal then corresponds to
the minimal observed quadrature variance.

Given that quadrature squeezing is inherently a phase-
sensitive phenomenon, one would expect that it may not
be possible to determine the squeezing properties without
an external phase reference (LO). In this Letter, we show
that, surprisingly, a phase-insensitive device is sufficient
provided that we can a priori assume that the optical
mode is in a Gaussian state. The setup we suggest consists
of beam splitters with variable splitting ratios, phase
shifters, and photodetectors with single-photon sensitiv-
ity (e.g., avalanche photodiodes). No interferometric
stability is required if we a priori know that the coherent
displacement of the state vanishes, which is the case for
the important class of squeezed and entangled states
generated by means of spontaneous parametric down-
conversion. Our scheme can be used to directly determine
the squeezing of multimode Gaussian states. In particu-
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lar, a variation of our setup is capable of measuring the
degree of entanglement of a two-mode Gaussian state,
namely, the logarithmic negativity [3,4]. Besides the de-
termination of squeezing and entanglement, our setup can
also be used to measure the purity of Gaussian states [5].
In addition, the detectors need not be perfect and an
efficiency �< 1 can easily be compensated by proper
data processing. Since our scheme is based on photon
counting, it is suited for the low photon-number regime
where the mean number of photons �n in each mode is
small, �n & 1. We stress that many protocols for
continuous-variable quantum information processing
are based on squeezed vacuum states which satisfy this
property. For instance, a pure single-mode squeezed vac-
uum state with 3 dB of squeezing contains only �n �
0:125 photons on average.

Our scheme works for an arbitrary number of modes N
and is economic with respect to N in the sense that the
number of measured parameters is only linear in N while
the full tomography of Gaussian states revealing the
whole covariance matrix would require the measurement
of / N2 parameters. In this context, it is related to several
recent proposals on how to directly measure the purity,
overlap, and entanglement of discrete-variable quantum
states without full state reconstruction [6–9]. It is also
reminiscent of the photon-number distribution measure-
ment scheme using a photodetector without single-photon
resolution as proposed in Ref. [10].

Preliminaries.—Let r� �x1;p1; . . . ; xk;pk; . . . ; xN;pN�
be the vector of conjugate quadratures of N modes which
satisfy the canonical commutation relations �xj; pk� �

i
jk. The Gaussian state is fully described by the vector
of mean values �j � hrji and the covariance matrix

�jk � h�rj�rki 	 h�rk�rji; (1)

where �rj � rj 
 �j. The quantum state of the optical
field can be fully characterized by a s-parametrized qua-
sidistribution which provides phase-space representation
of the quantum state. For our purposes, it is convenient to
utilize the Husimi Q function. The Q function of an
N-mode Gaussian state is the Gaussian distribution [11]
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Q�r� �
�
N����������������������

det��	 I�
p exp�
�r
 ��T��	 I�
1�r
 ���;

(2)

where I is the identity matrix. The squeezing properties
do not depend on � and are fully described by �. The
maximal observable squeezing, i.e., the minimal quad-
rature variance, is called the generalized squeezing vari-
ance � and can be determined from the minimal
eigenvalue of the covariance matrix [12],

� � 1
2min�eig����: (3)

The purity of the mixed state with density matrix � is
defined as P � Tr��2�. For a Gaussian state with covari-
ance matrix �, one obtains [5]

P � �det����
1=2: (4)

Single-mode case.—Let us first illustrate the procedure
on single-mode Gaussian states (N � 1); see Fig. 1(a).
The input mode impinges on a BS with tunable trans-
mittance T, and the output mode is measured by a PD
with efficiency � that is sensitive to single photons (no
single-photon resolution is needed). We assume that this
realistic detector can be modeled as a beam splitter with
transmittance � followed by an ideal detector that per-
forms a dichotomic measurement described by the pro-
jectors on vacuum and on the rest of the Hilbert space,
respectively, �0 � j0ih0j and �1 � 1 
�0. (In what
follows, we assume that the detector is ideal and � can
be taken into account by substituting T ! �T.) The
probability of no-click of an ideal detector PD is given
by P � Tr���0� � h0j�j0i � 2�Q�0�, so that inserting
r � 0 into Eq. (2) yields

P �
2�����������������������

det��0 	 I�
p exp�
�0T��0 	 I�
1�0�; (5)

where �0 and �0 are, respectively, the covariance matrix
and the displacement vector of the beam impinging on the
photodetector.

Suppose that we set the beam splitter transmittance to
the value Tj. The covariance matrix �0 of the state after
passing the beam splitter reads �0 � Tj�	 �1
 Tj�I.
Similarly, the coherent signal is damped to �0 �

�����
Tj

p
�.
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FIG. 1. Direct measurement of a Gaussian state with the use
of a photodetector (PD) with single-photon sensitivity, pre-
ceded by a beam splitter (BS) of transmittance T. (a) Single-
copy scheme for � � 0. (b) Two-copy scheme for � � 0.
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On inserting �0 and �0 into Eq. (5), we obtain

Pj �
2

�det�~�Tj
��1=2

exp�
Tj�T ~�
1
Tj

��; (6)

where ~�Tj
� Tj�	 �2
 Tj�I. We thus find that Pj de-

pends on Tj and four parameters of the state: det���,
Tr���, g1 � �2

1�22 	 �2
2�11 
 2�12�1�2, and g2 �

�2
1 	 �2

2. This immediately suggests that if we measure
Pj for at least four different Tj’s, we might be able to
reconstruct the values of these four parameters by solving
a system of nonlinear equations. However, numerical
simulations reveal that the inversion of these highly non-
linear equations typically leads to extremely large fluctu-
ations of the estimated parameters even for a very large
number of measurements for each setting Tj.

Fortunately, in the important case where the displace-
ment vector is zero (� � 0), we have g1 � g2 � 0 and the
scheme provides reliable estimates of Tr��� and det���
since formula (6) then simplifies to

T2
j det��� 	 Tj�2
 Tj�Tr��� 	 �2
 Tj�

2 � 4P
2
j : (7)

This results in a system of linear equations for det��� and
Tr���. If measurements for two different transmittances
T1 and T2 are performed and the observed probabilities of
no-click are P1 and P2, then the system of Eqs. (7) can
easily be solved and yields

T r��� �
2

T2 
 T1

�
T2

T1P
2
1



T1

T2P
2
2

�
	 2


2

T1



2

T2
; (8)

det��� �
2

T1 
 T2

�
2
 T2

T1P
2
1



2
 T1

T2P
2
2

�
	

�2
 T1��2
 T2�

T1T2
:

(9)

Let us investigate what can be extracted from the knowl-
edge of Tr��� and det���. As noted above, the generalized
squeezing variance � can be determined from the eigen-
values of �; cf. Equation (3). For a single-mode state, � is
a symmetric 2� 2 matrix, and its eigenvalues can be
expressed in terms of det��� and Tr���, which are both
determined by the present method. We find that

� � 1
4�Tr��� 


������������������������������������
Tr2��� 
 4 det���

q
�: (10)

Moreover, since our method provides an estimate of det�,
we can also determine the purity from Eq. (4).

If � � 0, our scheme is still usable provided that we can
perform a collective measurement on two copies of the
state, as depicted in Fig. 1(b). The two input modes AI and
AII prepared in identical Gaussian state interfere on a
balanced beam splitter. In the Heisenberg picture, the
annihilation operators of the output modes A	 and A


are linear combinations of those of the input modes,
a� � 2
1=2�aI � aII�. The covariance matrix of mode
A
 is equal to � [13], but the coherent signal in A
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vanishes due to the destructive interference, �
 � 0. As
shown in Fig. 1(b), mode A
 is subsequently sent to a
direct measurement setup identical to that shown in
Fig. 1(a).

Multimode case.—We now extend this procedure to
multimode Gaussian states. A reliable operation again
requires two copies AI and AII. Essentially, we use in
parallel N setups such as shown in Fig. 1(b). We combine
each pair of modes AI;k and AII;k, with k � 1; . . . ; N, on a
balanced beam splitter. Each ‘‘minus’’ mode A
;k, with
� � 0, is then sent to a beam splitter of transmittance Tj

followed by a photodetector. We measure the probability
Pj � 2N=�det~�Tj

�1=2 that none of the N detectors clicks.
For an N-mode state, the determinant of ~�T � T�	 �2

T�I can be expanded as

det�~�T� �
X2N
n�1

Tn�2
 T�2N
nfn��� 	 �2
 T�2N; (11)

where fn��� is a homogeneous polynomial of nth order in
the matrix elements of �, e.g., f2N��� � det��� and
f1��� � Tr���. The probability Pj thus depends on Tj

and the 2N parameters fn���. If we measure Pj for 2N
(or more) different transmittances Tj’s, then we can de-
termine the parameters fn of the Gaussian state by solv-
ing a system of linear equations

X2N
n�1

Tn
j �2
 Tj�

2N
nfn��� � 22NP
2
j 
 �2
 Tj�

2N: (12)

Once we know fn���, we can determine the generalized
squeezing variance � as the smallest root of the charac-
teristic polynomial det�2�I 
 �� � 0. It can be seen from
Eq. (11) that the parameters fj��� are the coefficients of
this characteristic polynomial, and we have

�2��2N 	
X2N
1

k�0

�2��k�
1�kf2N
k��� � 0: (13)

We can also determine the purity of the N-mode Gaussian
state from f2N��� with the help of formula (4).

Entanglement detection.—In the context of quantum
information processing with continuous variables, the
entanglement properties of Gaussian states deserve par-
ticular attention. It has been shown that a two-mode
Gaussian state is separable if and only if (iff) it has a
positive partial transpose [14,15]. This property can
easily be checked if one knows the covariance matrix

�AB �

�
�A �AB

�T
AB �B

�
(14)

of the bipartite state, where �A and �B are the covariance
matrices of modes A and B, respectively, while �AB
captures the intermodal correlations. Moreover, analyti-
cal formulas for several entanglement monotones that
measure the entanglement of Gaussian states have been
given in the literature [4,16]. A particularly simple for-
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mula has been obtained for the logarithmic negativity
EN of an arbitrary Gaussian state. To calculate EN , we
must determine the symplectic spectrum of the covari-
ance matrix of the partially transposed state �TA

AB. As
shown in Ref. [4], the symplectic eigenvalues are the
two positive roots  1 �  2 > 0 of the biquadratic equation

 4 
 �det�A 	 det�B 
 2 det�AB� 
2 	 det�AB � 0:

(15)

The solution of Eq. (15) yields

 22 � 1
2�D


������������������������������
D2 
 4 det�AB

q
�; (16)

where D � det�A 	 det�B 
 2 det�AB. The two-mode
Gaussian state is entangled iff  2 < 1. In this case, we
have EN � 
 log� 2�, while EN � 0 otherwise. The
condition  2 < 1 implies the necessary and sufficient
entanglement condition D> 1	 det�AB [15,17], which
explicitly reads

det�A 	 det�B 
 2 det�AB > 1	 det�AB: (17)

With the use of the method proposed in the present
Letter we can measure det�AB, det�A, and det�B. An
upper bound on det�AB in terms of these determinants
can be derived from the condition that the symplectic
eigenvalues ~ j of the covariance matrix �AB must be
greater or equal to 1 [17]. The lower eigenvalue ~ 2 is given
by Eq. (16), where D is replaced with D0 � det�A 	

det�B 	 2 det�AB. The condition ~ 22 � 1 yields

2 det�AB � det�AB 	 1
 det�A 
 det�B: (18)

This, in turn, implies an upper bound on the lower sym-
plectic eigenvalue  2 of the covariance matrix of �TA

AB. On
inserting the upper bound on 2 det�AB given by Eq. (18)
into Eqs. (16) and (17) we find that  2 < 1, so that the state
is entangled when

det�A 	 det�B > 1	 det�AB (19)

holds. Inequality (19) is thus a sufficient condition for
entanglement, but it is not necessary as some Gaussian
entangled states are not detected by this test. The main
advantage of this test is that all determinants appearing
in Eq. (19) can be determined by local measurements
supplemented with classical communication between A
and B. Moreover, if we can a priori assume that � � 0,
then measurements on a single copy of �AB suffice.

If we now want to exactly determine EN , we also need
a scheme to measure det�AB. Unlike the previous one, this
scheme requires joint nonlocal measurements on modes A
and B, and it involves several steps as schematically
illustrated in Fig. 2. One first prepares states with zero
displacement; see Fig. 2(a). Using the scheme of Fig. 2(b),
we can measure the determinants of the covariance ma-
trices �	 and �
 of modes A	 and A
 that are linear
combinations of the modes A and B, a� � �a� b�=

���
2

p
.

After a simple algebra, we find that
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FIG. 2. Direct measurement of the intermodal correlations
det�AB of a two-mode Gaussian state. (a) Preparation of states
with zero displacement � � 0 needed for steps (b) and (c). (b)
Measurement of det�	 ( det�
 is measured similarly). (c)
Measurement of det�A	B.
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det��AB 	 �T
AB� � 2 det�	 	 2 det�
 
 det��A 	 �B�:

(20)

In order to determine det��A 	 �B�, we have to carry out
a joint measurement on two independent copies of the
two-mode state, as depicted in Fig. 2(c). By mixing the
modes A1 and B2 on a balanced beam splitter, we prepare
an output single-mode state with covariance matrix
�A	B � ��A 	 �B�=2. Recall that the modes A1 and B2

belong to two independent copies of the two-mode state
�AB; hence A1 and B2 are uncorrelated. After the mea-
surement of det�	, det�
, and det�A	B, we calculate
det��AB 	 �T

AB� from Eq. (20). It holds that det��AB 	
�T

AB� � 4 det�AB and the equality is achieved when �AB

is symmetric. The matrix �AB can be brought to a sym-
metric form by applying a local phase shift exp�i$byb� to
mode B using the phase shifter (PS) in Fig. 2. This
transforms �AB to �ABU�$� where

U�$� �

�
cos$ sin$

 sin$ cos$

�
:

To determine the phase shift $ that symmetrizes �AB, we
measure y$ � det��ABU�$� 	UT�$��T

AB� for three dif-
ferent phases $ � 0, �=4, and �=2. It can be shown that

y$ � y0cos
2$	 y�=2sin

2$	 ~y�=4 sin�2$�;

where ~y�=4 � y�=4 
 �y0 	 y�=2�=2. The value of det�AB

can be found as the maximum of y$ over $ which yields

det�AB � 1
8�y0 	 y�=2 	

�������������������������������������������
�y0 
 y�=2�

2 	 4~y2�=4

q
�:

This finally provides all the information required for the
exact calculation of the logarithmic negativity EN .

In summary, we have proposed a scheme for the direct
measurement of the squeezing, purity, and entanglement
of Gaussian states that does not require homodyne detec-
tion but needs only beam splitters and photodetectors
with single-photon sensitivity. The scheme generally re-
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quires joint measurements on two copies of the state, but
single-copy measurements suffice if it is a priori known
that the mean values of the quadratures vanish, which is,
e.g., the case of the squeezed and entangled states gen-
erated by spontaneous parametric down-conversion. We
have shown that, based on Eq. (19), the present method
can be used to assess the entanglement of 1� 1 Gaussian
states by means of local measurements, without employ-
ing any local oscillator or interferometric schemes. Given
the simplicity of the setup, the prospects for an experi-
mental realization look very good.
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Note added.—The sufficient condition on entanglement
[Eq. (19)] has recently and independently been derived by
Adesso et al. [18]. Besides the lower bound on EN linked
to Eq. (19), an upper bound on EN expressed in terms of
the determinants of �A, �B, and �AB was also derived in
Ref. [18]. Remarkably, these two bounds are typically
very close to each other, so the knowledge of the deter-
minants of the covariance matrices provides quite precise
quantitative information on the entanglement.
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