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We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a
single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping,
the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency
is larger than the atomic transition frequency, the generated laser light attracts the atom to the field
antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate
this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong
coupling, the generated field shows strong nonclassical features such as photon antibunching, and the
atom is spatially confined and cooled to sub-Doppler temperatures.
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Optical cavity QED experiments using high finesse
resonators and ultracold neutral atoms have seen tremen-
dous progress towards larger coupling strength and inter-
action time in the past decade, becoming a fruitful test
ground of quantum theory [1–5]. One particular goal of
cavity QED is a single-atom, single-mode laser. In anal-
ogy to the micromaser, a one-atom laser using an atomic
beam crossing an optical resonator has been realized
some time ago [6]. However, although effectively only a
single or a few atoms are present at a time, the short
interaction times make this still a many particle device.
Very recently important progress towards single particle
lasing has been achieved by placing a small ion trap into a
high-Q cavity [2,7]. This allows very long interaction
times, but technical limits set by the ion trap still prevent
to reach threshold.

In all optical setups the atoms are extremely cold at the
beginning, but the light forces induced by the cavity field
and pumping itself lead to fast heating. Even less than one
photon on average induces significant dissipation [1] and
limits interaction times. By a proper choice of parameters,
one can minimize this heating caused by light forces [8]
or even use cavity induced cooling forces [9,10] to en-
large the trapping times. Alternatively, the addition of an
extra dipole trapping potential led to much larger inter-
action times [11] and enabled the first realization of
single-atom lasing in the strong coupling regime [5].
There, steady state light output generated from one
atom for almost a second was achieved from a three
photon Raman type gain scheme. A theoretical analysis
of this experiment neglecting atomic motion can be found
in [12]. Similar models have been widely used in funda-
mental studies of quantum laser theory [13]. They con-
stitute light sources with unique properties. For example,
one is able to sustain a stationary single photon Fock state
or generate highly sub-Poissonian output [14]. Note that
the same atom is present during the whole time here.

In this Letter we include the atomic motion which is
predominantly governed by the light forces of the laser
0031-9007=04=93(6)=063002(4)$22.50 
field created by the atom itself. For our model we assume
that no coherent driving field is applied to the atom or the
mode and no extra trap is present. As expected, the proper
accounting of the cavity field forces implies significant
modifications of the system dynamics [9]. In general, the
atomic motion and the dynamics of the internal variables
are coupled and correlated or even entangled. The atom
moves under the influence of the dipole force which
depends on the mode intensity. This intensity in turn
depends on the atomic position in a highly nonlinear
way as the atom itself is the gain medium.

From a first guess, one could already expect some self-
trapping effect if one chooses the parameters such that
lasing only starts when the atom is close to a field anti-
node. The laser field then could generate an attractive
potential keeping the atom in the vicinity of this anti-
node. Naively, this requires the lasing mode to be red
detuned relative to the atomic transition frequency. In this
case, though, the extra energy from the atomic transition
is likely to be converted into kinetic energy heating the
atom. Similarly, for a blue detuned cavity mode, one
expects cooling but repulsion from the antinodes.
However, the situation is a bit more complicated. As
gain requires atomic inversion, an atom in steady state
can still be a high field seeker for blue detuning, and the
laser frequency is itself a dynamical quantity. Thus, we
can still hope to find parameters where trapping, cooling,
and lasing coincide. Of course, heating through sponta-
neous emission and dipole fluctuations will also be
present. This makes the total dynamics hard to guess,
which motivated us to study the problem in more detail.

Let us now define our model to be as simple as possible
while still containing the essential physics. For this we
restrict ourselves to a two-level atom moving in a single
strongly coupled cavity mode in one dimension. As in
well proven approaches developed in the early days of
laser theory [13], incoherent pumping can be consistently
modeled by inverse spontaneous emission at rate 2�.
Following standard procedures of quantum optics, we
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can derive the master equation _� � L� governing the
time evolution of the system including atomic spontane-
ous emission at rate 2� and cavity decay at rate 2�.

In a frame rotating at the mode frequency !c we get

L� � i��jeihej; ��� � g cos�kx	


��jeihgjâ; ��� � �âyjgihej; ���	

���2jeihgj�jgihej � �jgihgj; ���	

���2jgihej�jeihgj � �jeihej; ���	

���2â�ây � �âyâ; ���	: (1)

Here jgi (jei) and â denote the atomic ground (excited)
state and the field annihilation operator, respectively. The
cavity mode with mode function cos�kx	 and frequency
!c is detuned from the atomic transition frequency!a by
� � !c �!a.

In a first step to characterize the system dynamics we
look at the steady state of the system for fixed atomic
position x, which enters the equations only via the cou-
pling strength g cos�kx	. In Fig. 1 we plot the photon
number n (solid line), its scaled uncertainty �n=n
(dashed), and the atomic upper state population (dash-
dotted) as a function of g for fixed pump strength � �
37:5� � 7:5� for large atom-field detuning � � 250�.
As expected, the photon number depends upon g in a
nonlinear way and the system starts lasing only for
sufficiently large g when the atom is close to a field
antinode. With growing photon number �n > 1	 the cor-
responding spectrum shown in the little insets of Fig. 1 is
redshifted from the empty cavity resonance and acquires
a width below the empty cavity linewidth. Hence, we can
hope for stable trapping close to the antinode combined
with lasing at these parameters.
FIG. 1. Average photon number n (solid line), scaled uncer-
tainty �n=n (dashed), and upper state population (dash-dotted)
as a function of g=� for the atom kept at fixed position. The
parameters are ��; �;�	 � �5; 37:5; 250	�. The little insets
show the emitted light spectrum for g � �5; 25; 45	�.
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Let us include atomic motion and check. Since the
number of degrees of freedom is rather large now, we
use a Monte Carlo wave function simulation technique to
numerically approximate the solution of the master equa-
tion [15]. Averaging gives an approximate density opera-
tor ��t	 while analyzing individual trajectories provides
extra insight in the microscopical dynamics.

We briefly review the method now. Defining a super-
operator S� �

P
iĉi�ĉ

y
i based on collapse operators ĉi

related to the quantum jumps, we get single trajectories
by propagation with a non-Hermitian Hamiltonian Heff

�L�S	� � �iHeff�� i�Hy
eff ; (2)

in between stochastically occurring jumps. The jump
probabilities within the interval �t; t�4t� are given by
pi�t	 � h �t	jĉyi ĉij �t	i 4 t. One first propagates j �t	i
using Heff for one time step 4t

j �t�4t	i � exp��iHeff 4 t	j �t	i (3)

and calculates pi. Using random numbers ri 2 �0; 1� and
comparing them to pi�t	, one then decides on the occur-
rence of collapses j i ! ĉij i at the end of 4t. The jumps
here include atomic decay (

������
2�

p
jgihej), cavity decay

(
������
2�

p
â), and pump events (

������
2�

p
jeihgj).

Explicitly the effective HamiltonianHeff reads � �h � 1	

Heff � �i�jgihgj � ��� i�	jeihej

�i�âyâ� ig cos�kx	�jeihgjâ� âyjgihej	: (4)

As the atomic temperature is well above the recoil
limit, we treat the external atomic variables x and p
classically [16]. Thus we have to add _x � p=m and _p �
F to our equations. The force F is given by

F � h�rHeffi � �ikg sin�kx	h jeihgjâj i � H:c: (5)

Finally, we have to truncate the Hilbert space H �
spanfjgi; jeig �H F (H F is the Fock space of the
mode) at photon number N. Our state space thus contains
the ground state jg; 0i and N manifolds separated by !a
with states jg; ni and je; n� 1i, n � 1:::N. Any wave
function is determined by 2N � 1 complex numbers,

j i � g0jg; 0i �
XN

n�1

�gnjg; ni � enje; n� 1i	; (6)

where only 2N are independent due to normalization.
Note that in contrast to most previous treatments of light
forces in a cavity, we cannot adiabatically eliminate the
excited state since we have to deal with an inverted atom.

Let us now examine stochastic simulation averages for
typical cases. After turning on the pump, the mean pho-
ton number n increases rapidly and reaches a constant
value within a few cavity relaxation times (Fig. 2). At the
same time the atom gets trapped and remains captured in
the potential of the light it has generated. In addition we
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FIG. 2. Average photon number n and Mandel Q parameter
for the lasing startup phase including atomic motion. The
parameters are ��; �; g	 � �5; 40; 50	� where the cavity field
is detuned from the atomic transition by � � 250�.

FIG. 4. Position distribution of an atom trapped at an anti-
node for the parameters of Fig. 3 (solid line) and for a increased
pumping rate � � 60� (dashed).
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show the Mandel Q parameter [Q � �n2 � n2	=�n	 � 1]
as a measure of the field intensity noise.

Figure 3 shows the atomic kinetic energy averaged over
5000 realizations in units of the Doppler temperature
TD � �h� for the parameters of Fig. 2 where the mean
photon number reaches n � 3:8. Starting at a very low
velocity, the atom gets cooled (heated) for a wide range of
positive (negative) detunings �. The inset shows the
analogous result for � � �250�. This agrees with a
simple energy conservation argument. The atom gains
the internal energy �h!a from a pump event. Subse-
quently it loses the energy �h!c by stimulated emission
into the cavity mode. The energy mismatch is compen-
sated by the atomic center of mass motion which gets
damped if!c �!a > 0. This argument is confirmed by a
FIG. 3. Mean square velocity in units of the Doppler tem-
perature TD for � � 250�. The other parameters are
��; �; g	 � �5; 40; 50	�; TD is indicated by the dashed line.
For negative detuning the atom gets heated up; see inset where
� � �250�.
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closer look at basic absorption and emission processes
including Doppler shift from the atomic motion.

Naively one would guess that the atom is expelled from
the interaction region of a blueshifted light field.
However, this is not true for a partially inverted atom
which still can be trapped near the mode antinodes. This
feature is essential to allow steady state operation of our
single-atom laser. The solid line in Fig. 4 shows the
position distribution of an atom trapped after the cooling
process of Fig. 3. Clearly, the atom spends most of the
time in the vicinity of an antinode with a mean square
distance of x2 � �0:097�	2. This value decreases further
FIG. 5. (a) Photon number expectation value for a single
trajectory of a trapped atom within ten cavity relaxation times
for ��; �; g	 � �10; 60; 50	�. The dashed line indicates the
mean photon number. (b) Corresponding single-trajectory q
factor.
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FIG. 6. Mean photon number and Mandel parameter vs
pumping strength �=�.
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for larger photon numbers, e.g., for n � 12 (� � 60�) we
get x2 � �0:074�	2 (dashed line). The nonvanishing
probability near x � ��=4 shows some remaining hop-
ping of the atom between different trapping sites.

So far we calculated ensemble averages to investigate
the motional characteristics. It is now quite interesting to
look at individual trajectories j �t	i to visualize the mi-
croscopic dynamics. Figure 5(a) depicts a typical example
of the photon number time evolution hnit �
h �t	jâyâj �t	i for a trapped atom for ten cavity relaxa-
tion times. Starting in a certain state je; ni, the system
gets entangled with jg; n� 1i owning to the atom-cavity
coupling. The incoherent pumping projects it into the
state je; n� 1i and creates a Fock state with n� 1 pho-
tons. Unless a photon leaks out of the cavity or another
one is created, the photonic state remains nearly un-
changed for the following reasons. First, we chose a large
detuning � � 250� in order to keep the atom trapped at
antinodes as well as possible. Second, the atom undergoes
several jumps due to alternating spontaneous emission
and pump events. After each of these cycles the system
is again projected into the initial state je; n� 1i, which
gives the cascade shape of hnit. Notice that the pumping
process creates no coherence, as it would be, e.g., in a
lambda type system such as in [14]. Here ac Stark split-
ting of dressed states does not effect the probability of
exciting the system which is solely given by the atomic
ground state population and, hence, the system can be
excited into states with higher photon numbers more
easily. Nevertheless, for each trajectory the cavity field
remains close to a Fock state with photon numbers vary-
ing around the mean value indicated by the dashed line.
This behavior is demonstrated in Fig. 5(b) where the
single trajectory Mandel factor which describes the actual
state of the cavity field attains values close to q � �1 as
long as one photon is present at least. This is due to the
fact that in each trajectory we know the number of pump
and decay events. Statistical averaging over the pump
events washes out this feature.
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Let us now come back to ensemble averages of field
properties. Figure 6 depicts n and Q as a function of �=�
with ��; g	 � �200; 100	� for � � 0. In general the field
intensity is strongly fluctuating. These fluctuations are
even more pronounced than for an atom at rest and in
turn increase motional heating. Only for larger photon
numbers the Mandel Q parameter drops down to zero as
for a coherent state (lasing).

In summary light forces significantly influence the
dynamics of a single-atom laser. Surprisingly, for blue
atom-field detuning several effects work together in a
favorable way to facilitate steady state lasing in conjunc-
tion with mechanical cooling and trapping. Steady state
temperatures below the Doppler limit are possible in spite
of enhanced momentum diffusion due to fluctuations of
the photon number. The light field shows nonclassical
features and approximates a coherent state with a coher-
ence time beyond the cavity lifetime only far above
threshold. Although the description of the atom is over-
simplified here, we believe that our central findings like
enhanced trapping and self cooling with lasing still
should be present in a real system.
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