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Pinning of Vortices in a Bose-Einstein Condensate by an Optical Lattice
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We consider the ground state of vortices in a Bose-Einstein condensate. We show that turning on a
weak optical periodic potential leads to a transition from the triangular Abrikosov vortex lattice to
phases where the vortices are pinned by the optical potential. We discuss the phase diagram of the
system for a two-dimensional optical periodic potential with one vortex per optical lattice cell. We also
discuss the influence of a one-dimensional optical periodic potential on the vortex ground state. The
latter situation has no analog in other condensed-matter systems.
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Introduction.—The effects of a periodic array of pin-
ning centers on vortices in superconducting materials
have attracted a lot of experimental [1–5] and theoretical
[6–13] attention. Of particular interest is the effect of the
pinning potential on the melting of a vortex lattice. The
vortex lattice is known to melt via a first-order transition
in clean materials [14], whereas the presence of pinning
centers significantly enriches the phase diagram, due to
the intricate interplay between the vortex-vortex inter-
actions, pinning potential, and thermal and quantum
fluctuations [6–8]. At zero temperature and for strong
pinning, the system has, depending on the number of
vortices per pinning center, i.e., the filling factor, various
phases where the vortices order in a periodic array [9–12].
If the pinning potential is weakened, the pinned vortex
lattice undergoes a first-order transition to a deformed
triangular Abrikosov lattice [13].

Recently, the experimental study of vortices in super-
fluids has been complemented by the experiments with
rotating atomic Bose gases [15–18].Within this field it has
become possible to experimentally study the dynamics of
a single vortex line in great detail [19,20], leading to an
enhancement of the theoretical interest in the dynamics
of a single vortex in a Bose-Einstein condensed atomic
gas [21].

Another interesting development in the field of atomic
gases is the possibility to trap atoms in a periodic poten-
tial using a so-called optical lattice. Here, one uses the
dipole force which the atoms experience in an off-reso-
nant light field. Using an optical lattice Greiner et al. [22]
were able to experimentally observe the transition from a
superfluid, where the atoms are delocalized across the
lattice, to a Mott-insulating state where the atoms are
localized on site [23].

A common feature of the experiments with ultracold
atomic gases is that these systems are very clean.
Therefore, vortices in a Bose-Einstein condensate do
not experience an intrinsic pinning potential and the
observed vortex lattices are triangular Abrikosov lattices.
In this Letter, we study the ground state of vortices in a
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Bose-Einstein condensate. We show that turning on an
optical periodic potential leads to a transition from the
triangular Abrikosov lattice to phases where the vortices
are pinned by the optical potential. We restrict ourselves
to the case with one vortex per unit cell of the two-
dimensional optical lattice.

Interestingly, the precise knowledge of the optical lat-
tice potential allows for a microscopic and quantitative
calculation of the phase diagram, as opposed to super-
conducting materials, where the pinning potential is
known only phenomenologically. In the experiments
with rotating Bose-Einstein condensates, the vortex lat-
tices are relatively easy to observe, which allows for a
detailed experimental study of the transitions between
the various phases of the vortex lattice as one tunes the
strength of the optical potential. Moreover, applying a
one-dimensional optical lattice leads to pinning ‘‘val-
leys’’ instead of pinning centers, and, therefore, to pinned
phases of the vortex lattice which have no analog in other
condensed-matter systems.

Two-dimensional optical lattice.—Our starting point
is the Hamiltonian functional for the macroscopic con-
densate wave function ��x�, given by

H���;�� �
Z
dx���x�

�
�
�h2r2
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gj��x�j2

	 VOL�x� ��
�
��x�: (1)

Here, m denotes the mass of one atom which inter-
acts with the other atoms via a two-body contact inter-
action of strength g � 4
as �h2=m, with as the s-wave
scattering length. The optical lattice potential is given
by VOL�x� � sER�sin2�qx� 	 sin2�qy�� with ER the recoil
energy, q the wave number of the lattice, and s � 0 a
dimensionless number indicating the strength of the op-
tical lattice. Note that considering one vortex per unit cell
of the optical lattice implies that we take the two-dimen-
sional vortex density equal to nv � q2=
2. The chemical
potential that fixes the number of atoms in the condensate
is represented by �.
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FIG. 1. Vortex phase diagram of a Bose-Einstein condensate
in a two-dimensional optical square lattice, with one vortex per
unit cell of the optical lattice. Three phases are relevant: a
square and fully pinned configuration (SP), a triangular con-
figuration where half of the vortices are located at the pinning
centers (HP), and the unpinned triangular Abrikosov vortex
lattice (AB).
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In the following we consider for simplicity a conden-
sate with infinite extent in the x-y plane and tightly
confined in the z direction by a harmonic trap with
frequency !z. The latter assumption allows us to neglect
the curvature of the vortex lines and leads effectively to a
condensate thickness d �

����������������������

 �h=�m!z�

p
in the z direction.

In the Thomas-Fermi limit, where we neglect the kinetic
energy of the condensate atoms with respect to their
mean-field interaction energy, the global density profile
of the condensate in the optical lattice is given by
nTF�x� � n� �VOL�x� � sER�=g, with n � ��� sER�=g
the average density of the condensate. To find the poten-
tial energy of a vortex in a Bose-Einstein condensate in
an optical lattice as a function of its coordinates �ux; uy�,
we use the variational ansatz for the condensate wave
function

��x� �
��������������
nTF�x�

q
��jx� uj=�� 1� exp�i��x;u��; (2)

with � � 1=
��������������
8
asn

p
the healing length that sets the size

of the vortex core, ��x;u� � arctan��y� uy�=�x� ux��
the phase of the vortex, and ��z� the unit step function.
For the above ansatz to be valid, we have assumed that
the vortex core is much smaller than an optical lattice
period, q�� 1, and that the strength of the potential is
sufficiently weak, sER � �. Note that the above varia-
tional ansatz indeed describes a vortex along the z axis at
position �ux; uy� in the x-y plane.

Substitution of the ansatz in Eq. (2) in the Hamiltonian
functional in Eq. (1) and isolating the contribution due to
the presence of the vortex leads to [24]

U2D�u� �
d
8as

sERQ�q���cos�2qux� 	 cos�2quy��: (3)

Here, we defined Q�z� � J1�2z�=�2z� 	
R
1
1 d�J0�2z��=�,

with J0 and J1 the zeroth and first-order Bessel function of
the first kind. It is clearly seen that the potential energy is
minimal if the vortices are located at the maxima of the
optical potential. This is expected, since at these maxima
the condensate density, and hence the kinetic energy
associated with the superfluid motion, is minimal. The
expression in Eq. (3) is the pinning potential experienced
by vortices in a condensate loaded in an optical lattice. If
the pinning potential is sufficiently strong and we have
one vortex per unit cell of the optical lattice, the ground
state is a configuration in which each vortex is trapped or
pinned by an optical lattice maximum. For a two-dimen-
sional optical periodic potential, this is the square pinned
lattice (SP), shown in Fig. 1.

To determine the phase diagram in detail, we calculate
the total energy per vortex for an arbitrary vortex lattice.
This approach neglects the fact that for very weak pin-
ning potentials the triangular Abrikosov lattice will be
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slightly deformed [13]. Generally, the vortex lattice is
parametrized as follows:

u ��; � �
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; (4)

with ni 2 Z and 0 � �,  � 1
2 . The transformation ma-

trix conserves the area of the unit cell and thus ensures
that we are considering configurations with equal vortex
density. The more familiar parameters of a unit cell of a
two-dimensional lattice, the angle ’ and the ratio of the
length of the sides of the cell " � L1=L2, are related to �
and  by

cos’
"

�
��	  �

�����������������
1	 � 

p

1	 � 	 �2
;

sin’
"

�
1

1	 � 	 �2
:

(5)

The pinning energy per vortex is found by substituting
Eq. (4) in Eq. (3), summing over all ni, and dividing the
result by the number of unit cells. In the limit ni ! 1 we
find

E2Dpin��; � � �
d
8as

sERQ�q���$ ;0 	 $�;0�: (6)

Our next task is to determine the interaction energy per
vortex. In two dimensions, singly quantized vortices with
equal orientation experience a logarithmic long-range
interaction V�r� � �2
d �h2n=m log�r=�� for r� �
[25]. The interaction energy Eint per vortex for an infinite
two-dimensional lattice of vortices was calculated by
Campbell et al. [26]. Cast in a dimensionless form, their
result reads
~E int�
Eint
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FIG. 2. Vortex phase diagram of a Bose-Einstein condensate
in a one-dimensional optical lattice. Two phases are relevant: a
pinned triangular configuration (PT), and the unpinned trian-
gular Abrikosov vortex lattice (AB). We calculated the phase
boundaries for � � 0:01
=q0 (+), � � 0:005
=q0 (�), and
� � 0:001
=q0 ( � ). Note that at the line q=q0 � 1 the phases
coincide.
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It is important to realize that the interaction energy per
vortex is divergent for an infinite lattice, and that the
above expression gives the relative interaction energy for
configurations with equal vortex density.

The expression for Eint together with the expression for
the pinning energy in Eq. (6) enables us to minimize the
total energy as a function of � and  , and to determine
the vortex lattice ground state for different strengths of
the periodical optical potential. Performing this proce-
dure as a function of the dimensionless variables q� and
sER=� leads to three phases, which are physically due to
the competition between pinning and interactions. For a
very weak optical potential we find that vortices arrange
themselves on a triangular Abrikosov lattice (AB), with

� �  �
��������������������������
1=

���
3

p
� 1=2

q
, as expected. In this phase, with

~Eint � �1:321 12, the interactions dominate over the pin-
ning. On the other hand, when the pinning energy domi-
nates over the interaction, we find the square pinned
lattice (� �  � 0) [13]. This phase has ~Eint �
�1:310 53. In the intermediate regime, where the pinning
and interactions are equally important, we find a phase in
which half of the vortices are pinned (HP) [13], and the
lattice has a triangular structure (� � 1

2 ,  � 0 and
~Eint � �1:318 00). In the zero-temperature phase dia-
gram, shown in Fig. 1, the different phases are separated
by first-order phase transitions and the phase boundaries
are given by�
sER
�

	
AB-HP

�
0:006 23
Q�q��

;
�
sER
�

	
HP-SP

�
0:014 94
Q�q��

:

(8)

One-dimensional optical lattice.—For a one-
dimensional optical lattice the single vortex pinning
potential equals U1D�u� � �d=8as�sERQ�q�� cos�2qux�
and hence the minima of U1D act as pinning val-
leys. The pinning energy per vortex reads E1Dpin �
��d=8as�sERQ�q��$ ;0 within the parametrization in
Eq. (4). Two phases are distinguished in this case, i.e., a
pinned triangular lattice (PT), shown in Fig. 2, and the
unpinned Abrikosov vortex lattice. Interestingly, the in-
teractions always favor a triangular lattice since the vor-
tices are allowed to arrange freely in the y direction.

Consider now the case that the wave number of the
optical lattice is such that the AB lattice and the PT lattice
coincide, i.e., q0 � 2


���
3

p
=�3L�, with L the intervortex

distance. If this configuration is disturbed by changing
the optical lattice wave number to arbitrary q there will
be a competition between the AB lattice and the PT
lattice. The unit cell of the latter is, for wave number q
and at equal vortex density, described by

cos’
"

�
2

1	 3�q0q �
4 ;

sin’
"

�
2

���
3

p
�q0q �

2

1	 3�q0q �
4 : (9)

The interaction energy per unit cell is found by substitu-
tion of Eq. (9) in Eq. (7). From this we find the zero-
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temperature phase diagram, depicted in Fig. 2 for various
values of the healing length. The generic behavior is such
that for a given strength of the optical lattice and for small
deviations from q0, the vortex lattice stays pinned, i.e.,
the vortices are dragged along with the pinning valleys.
At certain q the phase boundary is crossed. Then the
vortices ‘‘jump’’ back to their original positions, forming
an Abrikosov lattice again.

Discussion and conclusions.—Since we have consid-
ered the ground state of vortices, we have implicitly
assumed that the optical lattice is corotating with the
Bose-Einstein condensate. Although this is very difficult
to achieve experimentally, it has, however, recently been
proposed to create effective magnetic fields, and therefore
effective rotation, by optical methods [27,28]. We believe
that the calculations presented here are relevant for such a
situation.

Of particular experimental interest are the collective
modes supported by the pinned vortex lattices. In the
absence of an optical lattice potential, the dispersion
relation for the gapless Tkachenko modes has been mea-
sured by Coddington et al. [29]. We expect that these
modes acquire a gap in the presence of a periodic optical
potential due to the fact that the translational symmetry is
not broken spontaneously, but by the optical lattice. In the
case of the SP lattice this gap is easy to calculate, since
the zero-momentum Tkachenko mode corresponds in
this case to a simultaneous in-phase precession of all
the vortices around the maxima of the optical lattice.
Hence the gap is given by �h!p, with !p the precession
frequency [21]

!p �

 �hq2Q�q��sER

mgn
: (10)

In future work we intend to study the collective modes of
the pinned vortex lattices in great detail.
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In this Letter we have restricted ourselves to the case of
one vortex per unit cell of the optical lattice. Another
direction for future work will be a detailed study of the
pinned phases at other filling factors, where other types of
pinned vortex lattices are known to occur [9–12]. Since
we have been considering only infinite lattices, we intend
to study also the effects of the finite size of the system,
which may be significant [30]. With respect to this latter
remark it is also important to note that the harmonic
magnetic trap used in the experiments induces an addi-
tional feature in the density profile of the condensate that
may have important effects [31] and therefore also re-
quires further study.

Apart from these interesting possibilities, yet another
direction would be to consider more strongly correlated
regimes that occur at fast rotation and to study the effects
of the periodic optical potential on the melting of the
vortex lattice [32]. One would expect that in this regime
the effect of quantum fluctuations, i.e., quantum tunnel-
ing of the vortices through the potential barriers of the
pinning potential, becomes important. Conversely, in the
limit of a strong optical periodic potential, an interesting
topic is to study the effects of the rotation on the Mott-
insulator transition [33]. In conclusion, rotating Bose
gases in an optical lattice provide an interesting system
to study new quantum phases of matter [34], as well
as phenomena known from condensed matter in a new
context.
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