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Dynamic Localization and the Coulomb Blockade in Quantum Dots under ac Pumping
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We study conductance through a quantum dot under Coulomb blockade conditions in the presence of
an external periodic perturbation. The stationary state is determined by the balance between the heating
of the dot electrons by the perturbation and cooling by electron exchange with the cold contacts. We
show that the Coulomb blockade peak can have a peculiar shape if heating is affected by dynamic
localization, which can be an experimental signature of this effect.
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Introduction.—Experimental observation of dynamic
localization (DL) in trapped ultracold atoms in the field
of a modulated laser standing wave [1] provided a solid
ground for the preceding extensive theoretical studies of
the kicked quantum rotor [2,3]. In a recent publication [4]
we have shown that an analogous suppression of the
energy absorption is possible for a solid-state system—
a chaotic quantum dot under an ac excitation, e.g., such as
those used in the experiments of Ref. [5], which makes
the question about the possibility of observation of DL in
a quantum dot highly relevant. If one wishes to detect this
effect by transport measurements, the Coulomb blockade
regime [6,7] is the most suitable, since it is in this regime
that the transport is sensitive to the internal state of the
dot. For an open dot, when electron-electron interaction
can be neglected, the conductance is insensitive to the
electron energy distribution in the dot [8,9].

Under nonequilibrium conditions, the (effective) elec-
tronic temperature T of the dot is determined by the
balance between heating by the ac perturbation and cool-
ing due to various mechanisms. At sufficiently low T
cooling is dominated by simple electronic exchange be-
tween the dot and the contacts (the latter are assumed to
be maintained at a constant low temperature determined
by the cryostat), while the energy exchange with the
phonon subsystem is negligible [10]. In this case, as the
gate voltage is detuned from the Coulomb blockade peak,
the cooling rate decreases, leading to an increase of T.
The dynamic localization manifests itself in suppression
of heating, which becomes T dependent. This makes the
shape of the Coulomb blockade peak sensitive to dynamic
localization.

Heating.—First, consider the standard picture of heat-
ing by an ac perturbation. Let the single-electron mean
level spacing � in the dot be small enough. Then, if an
external time-dependent periodic perturbation with the
frequency ! is applied, the total electronic energy E in
the dot (counted from that of the ground state) grows
linearly with time as described by the Fermi golden rule:
E�t� � �!2t=� � W0t. The probability per unit time � of
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each single-electron transition measures the ac power
[11]. The criterion of validity of the Fermi golden rule
is � � �, and � � ! is also assumed ( �h � 1).

This classical picture is valid only if each act of photon
absorption by an electron is independent of the previous
ones; however, for a discrete (though dense) energy spec-
trum this turns out not to be the case. After many tran-
sitions the absorption rate decreases due to accumulation
of the quantum interference correction [2– 4], so that
after a time t� � �=�2 the absorption is completely
suppressed. This effect is known as the dynamic local-
ization in energy space; the effective electronic tempera-
ture T� � �!=� (the characteristic spread of the electron
distribution function) reached by the time t� plays the role
of the localization length. Note that DL has nothing to do
with the saturation of absorption by a pumped two-level
system since in our case the spectrum is unbounded.

The considerations of Ref. [4] were based on a random
matrix theory description of the single-particle properties
of the dot, valid provided that all energy scales in the
problem are small compared to the Thouless energy ETh

(defined by the order of magnitude as the inverse of the
time required for an electron to travel across the dot and
thus to randomize its motion due to scattering off the dot
boundaries). For the dot to be in the Coulomb blockade
regime, the effective temperature should be also smaller
than the dot Coulomb charging energy Ec. In the follow-
ing, the hierarchy of scales � � � � ! � T� � ETh, Ec
is assumed (for a typical 2D GaAs dot �� 1 
eV, ETh �
100 
eV� 1 K [5]; the stronger the inequality � � ETh

is satisfied, the better).
Being an interference effect, DL requires perfect quan-

tum coherence. Electron interaction and/or connection to
leads causes electron dephasing. In the presence of weak
dephasing with the rate �� � 1=t�, there is a residual
absorption with the rate determined by ��:

Win �W0��t� � T2
���=�: (1)

If the dephasing is too strong, �� * 1=t�, the dynamic
localization is destroyed and Win �W0.
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FIG. 1. A schematic view of the dependence of the absorption
rate Win on the effective electronic temperature in the dot: in
the dynamic localization regime the absorption is due to
dephasing, so it is temperature dependent; when the tempera-
ture becomes high enough, the dephasing destroys the DL.
T < T� cannot be realized in the regime of strong DL.
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The expression (1) was justified in Ref. [12], for the
dephasing due to electron-electron collisions provided
that the effective electronic temperature T > T�. The
main condition of its applicability is that dephasing
should be a sequence of distinct phase-destroying events
with average rate ��, rather than phase diffusion, so that
the dephasing rate roughly coincides with the quasipar-
ticle relaxation rate: �� � �qp. This is certainly correct
for the case of electron escape to the contacts, since in this
case the electron is effectively replaced by another one
with an absolutely random phase. This is also true for
electron-phonon collisions and electron-electron colli-
sions in a quantum dot, since the typical energy transfer
during a collision is of the order of the (effective) elec-
tronic temperature in the dot, which is large: T > T� �

1=t�; �qp (T� � 1=t� due to �; ! � �). Note that this
condition is the reason why no exponentially small factor
such as e	T�=T or e	t	1

� =T arises in Eq. (1), in contrast to
hopping conductivity in disordered systems at low
temperatures.

Once the condition �� � �qp is verified, the following
consideration can be applied. As the collisions are rare
(�qpt� � 1), the electrons spend most of the time in the
states localized in the energy space, having definite phase
relationships. When at some moment the phase of some
electron is destroyed, its wave packet starts spreading
along the energy axis. It localizes again after the time
�t�, in the meantime spreading by �T�. Thus, the ac
driven dynamics following the collision leads to a change
of the total electronic energy of �T� per collision. The
sign of this change is, however, arbitrary, because a
periodic perturbation can equally cause transitions up
and down the spectrum. Only the presence of the filled
Fermi sea below (i.e., an energy gradient of the electronic
distribution function) makes absorption the preferred
direction, which means that if the electronic temperature
T � T�, the energy absorbed per collision is on the aver-
age �T2

�=T rather than T�. The effective number of
electrons that can participate in a collision is �T=�
(due to the degenerate Fermi statistics). During the time
interval �1=�qp, each electron participates in one colli-
sion, so the total number of collisions per unit time is
��T=���qp. This gives the energy absorption rate Win �

�T2
�=T��T=���qp, which is exactly Eq. (1).
The same can be seen from an alternative argument.

After each collision the electron spends the time �t�
absorbing the energy from the microwave field; then it
stops to absorb (the DL occurs) and waits for the next
event (provided that t� � 1=��). Thus the absorption
rate of the whole system is given by the simple weighted
average: Win �W0��t�, which is again Eq. (1).

As ��, generally speaking, depends on the electronic
temperature, so does the absorption rate in the DL regime
(Fig. 1). The quasiparticle relaxation rate due to electron
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collisions in a quantum dot was calculated by Sivan,
Imry, and Aronov [13]:

�e	e�T� � � �T=ETh�
2: (2)

The derivation of this expression implies the effective
continuity of the many-particle spectrum, which imposes
a condition T� �

�����������������������������������
ETh�= ln�ETh=��

p
[14]. Obviously, for

the dynamic localization to have any chance to develop,
the condition �e	e�T��t� � 1 should also be satisfied.

Sequential tunneling.—We characterize the coupling of
the dot to two contacts by electron escape rates �1, �2

(�1 
 �2 � � � �). Let U be the energy cost of adding
an electron to the dot, proportional to the gate voltage (at
the exact degeneracy point U � 0, corresponding to the
very top of the Coulomb blockade peak). When U is not
far from the degeneracy point, the main contribution to
the conductance comes from the leading order of the
perturbation theory in the dot-contact coupling. For char-
acteristic temperatures T � �, one can describe the sys-
tem by the rate equations of Kulik and Shekhter [15].

It is quite straightforward to consider these equations
for a general (nonequilibrium) electron energy distribu-
tion function in the dot. As an estimate for the electronic
distribution function we use the Fermi-Dirac form with
some temperature T. We also assume T to be much higher
than the temperature of the contacts T0 (T0 can be made as
low as �10 mK [16]), which is true if the pumping power
is high enough. Then a simple calculation gives the fol-
lowing expressions for the dot conductance G (in units
e2=2� �h), ‘‘renormalized’’ electron escape rate �esc, and
the cooling rate Wout [we denote x � U=�2T�, G0 �
�1�2=����]:

G�U� � G0

�
1	

x tanhx
ln�2 coshx�

�
; (3)
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�esc�U� �
�
2

�
1	

jxj
ln�2 coshx�

�
; (4)

Wout�U� �
�
�
T2

�
�2

12
	 x2 


2x
R
x
0 y tanhydy

ln�2 coshx�

�
: (5)

Stationary state.—For each given U the temperature T
of the stationary state is found from the energy balance
equation Wout � Win, where Wout is given by Eq. (5), Win

by Eq. (1), and the dephasing rate by Eqs. (2) and (4).
Substituting T into Eq. (3), one obtains the shape of the
Coulomb blockade peak.

Suppose for a moment that dephasing is dominated by
electron-electron collisions, while cooling is dominated
by the escape to the contacts [10]. One can notice the
following property of Eqs. (3) and (5): G=G0 and
Wout�U�=���=��T2 are functions of x � U=�2T� only.
This allows us to write a relation

Wout

T2
� ��=��W �G=G0�: (6)

The function W �G=G0� is plotted in Fig. 2 and with
logarithmic precision we have ��=��W �G=G0� �G.
Thus the physical meaning of Eq. (6) is similar to the
Wiedemann-Franz law.

The energy balance condition takes the form

Win � T2
�����T�=� � Wout � ��=��T2W �G=G0�; (7)

or G� ��=��W �G=G0� � ����T�=��T�=T�2. Remark-
ably, for ���T� given by Eq. (2) U and T drop out and
the solution of this equation for G is independent of U,
leading to a flat plateau G� �T�=ETh�

2 on the Coulomb
blockade curve G�U�. Note that the plateau conductance
must be smaller than the peak conductance G0 � �=�.
Therefore, the solution exists only if

�=� * �T�=ETh�
2: (8)
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FIG. 2. The function W �G=G0� defined in Eq. (6).
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Now consider the top of the peak, U � 0. Including the
dephasing due to both escape and electron-electron colli-
sions, we can write the energy balance condition as

��=��T2 � ��=��T2
� 
 �T�=ETh�

2T2: (9)

Here the left-hand side represents the cooling rate in the
peak and the two terms on the right-hand side come from
the dephasing due to escape and electron collisions, re-
spectively. Because of the condition (8), the second term
is smaller than the left-hand side, so the only way to
satisfy the equation is to have T�U � 0� � T�. Thus, for
the dynamic localization to be possible the dephasing in
the very peak of the Coulomb blockade must be domi-
nated by escape. One can extract the temperature of the
stationary state at U � 0 measuring the curvature of the
peak and study its dependence on control parameters:
intensity � and coupling to the contacts �.

As U is detuned from the peak, the dot becomes
effectively more closed. Thus, the crossover from the
peak to the plateau occurs when the two mechanisms
are equally efficient. With logarithmic precision this hap-
pens at

T � T� U�Umin � T�: (10)

The plateau ends when the temperature of the dot be-
comes so large that the dynamic localization is destroyed
by dephasing and Win �W0. Obviously, this happens
when the plateau G� �T�=ETh�

2 hits the curve GD�U� �
�W0=U

2� ln�G0U
2=W0� determined from the condition of

classical (Ohmic) absorption W0 � Wout. With logarith-
mic precision this happens at
U, a.u.

G
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FIG. 3. A sketch of the Coulomb blockade peak shape in
the DL regime (solid line): at small U <Umin the dephas-
ing is dominated by the electron escape (peak); at larger U
it is dominated by the electron-electron collisions (plateau);
and finally, at U >Umax the cooling is insufficient, the dy-
namic localization is destroyed, and the dot is in the Ohmic
regime. The Ohmic curve is also shown for reference by the
dashed line.
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FIG. 4. A schematic view of the phase diagram in terms of
the dimensionless intensity and escape rate (I 	 y plane),
without taking into account cooling and dephasing due to
phonons. The top of the Coulomb blockade peak corresponds
to DL only in region 1; the flat plateau in the tails exists both in
regions 1 and 2; in region 3 DL is absent.
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U�Umax � ETh

���������
�=�

p
: (11)

The resulting shape of the Coulomb blockade peak is
drawn schematically in Fig. 3.

It is convenient to introduce two dimensionless pa-
rameters, corresponding to two experimentally control-
lable parameters � (ac power) and � (tunneling into
leads):

I �
�

�

�
!
ETh

�
2=3

; y �
�
�

�
!
ETh

�
	2=3

: (12)

The necessary condition for dynamic localization
�e	e�T��t� � 1 becomes I � 1; the condition (8) is y �
I2. The top of the peak will correspond to DL regime if
�t� � 1 or Iy � 1 [17]. The resulting ‘‘phase diagram’’
is shown in Fig. 4.

Conclusions.—We have studied electronic conduction
through a quantum dot in the Coulomb blockade regime
under an external periodic perturbation. In contrast to the
well-studied equilibrium case, the electronic temperature
of the ac driven dot is determined by the balance between
heating by the perturbation and cooling due to electron
exchange with cold contacts. The cooling rate thus de-
pends on the gate voltage, and so does the dot tempera-
ture. As the gate voltage is detuned away from the peak,
the cooling rate decreases, and the temperature increases.
In the strong dynamic localization regime the heating
rate is determined by dephasing, as the usual linear
absorption is blocked by quantum interference. The
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most peculiar situation is realized when the dephasing
is due to electron-electron collisions: in this case the
Coulomb blockade peak has a flat shoulder, where the
conductance does not depend on the gate voltage. Such a
shape could be an experimental signature of the dynamic
localization effect.

We are grateful to Yu. M. Galperin, B. N. Narozhny,
C. M. Marcus, and B. L. Altshuler for helpful discussions.
*Electronic address: basko@ictp.trieste.it
[1] F. L. Moore et al., Phys. Rev. Lett. 73, 2974 (1994).
[2] F. M. Izrailev, Phys. Rep. 196, 299 (1990).
[3] F. Haake, Quantum Signatures of Chaos (Springer-

Verlag, Berlin, 2001).
[4] D. M. Basko, M. A. Skvortsov, and V. E. Kravtsov, Phys.

Rev. Lett. 90, 096801 (2003).
[5] A. G. Huibers et al., Phys. Rev. Lett. 83, 5090 (1999);

L. DiCarlo, C. M. Marcus, and J. S. Harris, Jr., Phys. Rev.
Lett. 91, 246804 (2003).

[6] L. P. Kouwenhoven et al., in Mesoscopic Electron
Transport, edited by L. L. Sohn, L. P. Kouwenhoven,
and G. Schön (Kluwer, Dordrecht, 1997).

[7] I. L. Aleiner, P.W. Brouwer, and L. I. Glazman, Phys. Rep.
358, 309 (2002).

[8] M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 64, 085115
(2001).

[9] V. I. Yudson, E. Kanzieper, and V. E. Kravtsov, Phys. Rev.
B 64, 045310 (2001).

[10] In quantum dots made of 2D electron gas at a GaAs
interface estimates analogous to those given in F. Zhou
et al., Phys. Rev. Lett. 77, 1958 (1996) and in Y. M.
Galperin and K. A. Chao, Found. Phys. 30, 2135 (2000)
give the cooling rate due to phonons Wph � AT6, where T
is the effective electronic temperature, and A is propor-
tional to the dot area. For a micron-sized dot A�
�1 K�	4, so phonons play a minor role at sub-Kelvin
temperatures.

[11] The transition rate is proportional to the power of the
microwave and can be estimated as �� �eEL�2=ETh,
where E is the amplitude of the electric field in the dot,
L is the dot size, and ETh is the Thouless energy. If the
screening length 1=� < L, one should substitute EL !
Eext=�. Finally, instead of using the microwave, one can
change the dot shape modulating the gate voltage.

[12] D. M. Basko, Phys. Rev. Lett. 91, 206801 (2003).
[13] U. Sivan, Y. Imry, and A. G. Aronov, Europhys. Lett. 28,

115 (1994).
[14] B. L. Altshuler et al., Phys. Rev. Lett. 78, 2803 (1997).
[15] I. O. Kulik and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 68, 623

(1975) [Sov. Phys. JETP 41, 308 (1975)].
[16] R. Deblock et al., Science 301, 203 (2003).
[17] Note that to observe the plateau the condition � � 1=t�

is not necessary: even if at U � 0 the DL is absent, as U
is increased, the dot becomes effectively more closed, so
the dephasing by escape becomes less efficient.
056804-4


