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Rashba-Effect-Induced Localization in Quantum Networks
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We study a quantum network extending in one dimension (chain of square loops connected at one
vertex) made up of quantum wires with Rashba spin-orbit coupling.We show that the Rashba effect may
give rise to an electron localization phenomenon similar to the one induced by magnetic field. This
localization effect can be attributed to the spin precession due to the Rashba effect. We present results
both for the spectral properties of the infinite chain and for linear transport through a finite-size chain
connected to leads. Furthermore, we study the effect of disorder on the transport properties of this
network.
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FIG. 1. Schematic view of the diamond chain. The bonds are
single-channel quantum wires with SO coupling. In the ideal
case all bonds have the same length L. The unitary cell contain
three nodes (4 wires): one with coordination number four and
two with coordination number 2.
Introduction.—It has been recently shown that in a
particular class of two-dimensional lattices quantum in-
terference due to the Aharonov-Bohm (AB) effect and to
the geometry of the network can induce strong electron
localization [1,2]. In such systems when localization
occurs particle motion is confined by destructive interfer-
ence inside a small portion of the network which is called
AB cage. This kind of localization does not rely on
disorder [3] but only on quantum interference and on
the geometry of the lattice. There have been several
theoretical works addressing different aspects of AB
cages as the effect of disorder and electron-electron in-
teraction [4], interaction induced delocalization [2], and
transport [5]. From the experimental side, the AB-cage
effect has been demonstrated for superconducting [6] and
metallic networks [7] in the so called T 3 lattice.

As already stated before, in the AB cages localization
is due to interference stemming from the fact that an
electron traveling along different paths acquires different
phases. It is known that the wave function of an electron
moving in the presence of spin-orbit (SO) coupling ac-
quires quantum phases due to the Aharonov-Casher effect
[8–13]. We now focus on the Rashba SO coupling [14],
which is present in semiconductor heterostructures due to
the lack of inversion symmetry in the growth direction.
It is usually important in small-gap zinc-blende–type
semiconductors, and its strength can be tuned by ex-
ternal gate voltages, as has been demonstrated experi-
mentally [15–17].

The question we address in this Letter is whether it is
possible to have localization in quantum lattices induced
only by the SO coupling without magnetic fields. To
answer this question we study the minimal model of a
bipartite structure containing nodes with different coor-
dination numbers that with magnetic field exhibits elec-
tron localization. This model structure is a linear chain of
square loops connected at one vertex (see Fig. 1), which
we term diamond chain. We have in mind a realization in
a semiconductor heterostructure where the bonds are
0031-9007=04=93(5)=056802(4)$22.50 
single-channel quantum wires of length L with Rashba
SO coupling. External gates should be present to tune the
strength of the SO coupling. This one-dimensional lattice
retains the essential features of the more complex T 3

networks, allowing for simple (even analytical for the
spectrum) solutions.

Model and formalism.—Neglecting subband hybridiza-
tion due to the Rashba effect [18,19], the Hamiltonian for
a single-channel wire along a generic direction �̂ in the
x-y plane reads

H �
p2�
2m

�
�hkSO
m

p�� ~
� ẑ� � �̂; (1)

where kSO is the SO coupling strength and ~
 is the vector
of the Pauli matrices. The SO coupling strength kSO is
related to the spin precession length LSO by LSO �

=kSO. For InAs quantum wells the spin-precession
length ranges from 0.2 to 1 �m [15–17]. These are the
characteristic length scales required for the bonds of the
network for spin precession to be effective. In order to
calculate spectral and transport properties of the network
we need to write the wave function on a bond (quantum
wire) connecting the nodes � and �, along the direction
�̂��,
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FIG. 2. Spectrum of the diamond chain for different values
of the strength of the spin-orbit coupling: (a) kSOL � 0;
(b) kSOL � 0:5; (c) kSOL � 1:0; (d) kSOL � 
=2.
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����r� �
1

sin�kl���
fsin�k�l�� � r�	ei� ~
�ẑ���̂��kSOr��


 sin�kr�ei� ~
�ẑ���̂��kSO�r�l�����g; (2)

where k is related to the eigenenergy by � � �h2
2m �k

2 � k2SO�
[20], r is the coordinate along the bond, and l�� is the
length of the bond. The spinors �� and �� are the values
of the wave function at the nodes � and �, respectively.
The spin precession due to the Rashba effect is described
by the exponentials containing Pauli matrices in Eq. (2).

Equation (2) is the key step to generalize the existing
methods to study quantum networks [5,21] in the presence
of Rashba SO coupling. The wave function of the whole
network is obtained by imposing the continuity of proba-
bility current at the nodes. For a generic node � it reads

M ���� 

X
h�;�i

M���� � 0; (3)

where

M�� �
X
h�;�i

cotkl��; (4a)

M�� ��
exp��i� ~
� ẑ� � �̂��kSOl��	

sinkl��
: (4b)

In Eqs. (3) and (4) the sum
P

h�;�i runs over all nodes �
which are connected by a bond to the node �.

Spectral properties.—Now, we apply the method pre-
sented above to calculate the spectral properties of the
diamond lattice. For an infinite lattice this can be done
imposing the Bloch condition on the wave function in the
unit cell. This straightforward procedure yields for the
spectrum the following analytical expressions:

"�0�n �k� �
�


2

 n


�
2

(5)

"���
n �k� � fn

 arccos�12�2
 2 cos�

���
2

p
kL� cos�kSOL�2

�
���
2

p
sin�

���
2

p
kL� sin�2kSOL��1=2	g2: (6)

The momentum k is defined in the first Brillouin zone
��
=

���
2

p
L;
=

���
2

p
L	 (notice that the lattice constant is���

2
p
L). The spectrum is composed of three kinds of bands.

The first one is nondispersive: this is a characteristic of
every bipartite structure containing nodes with different
coordination numbers. The bands � are degenerate for
zero SO coupling and are split by it. From Eq. (6) it is
apparent that these bands become nondispersive for
kSOL � �n
 1

2�
, n being an integer. This condition can
be recast using the spin-precession length as L � �n

1
2�LSO. For these values of the SO coupling strength the
system becomes localized (as is indicated by the diverg-
ing effective mass). A portion of the spectrum [Eqs. (5)
and (6)] is shown in Fig. 2 for increasing values of the SO
coupling strength. For zero SO coupling there are no gaps
in the spectrum. For finite values of the Rashba coupling
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the spin degeneracy of the � bands is lifted and gaps open
in the spectrum. When the SO coupling strength ap-
proaches the value kSOL � 
=2 the spectrum collapses
to a series of nondispersive bands.

The localization for the diamond chain can be under-
stood in terms of interference effects in analogy to the
AB cages. In the case of the AB effect the phase differ-
ence between different paths is due to the enclosed mag-
netic flux. In the present case the Rashba effect is
responsible for it. Consider an electron with spin j
i in
A (see Fig. 1). It can reach point B either via the upper or
the lower path. When traveling along the upper path, the
spin undergoes a precession first around ẑ� �̂1 and then
around ẑ� �̂2. Hence, the final state in B is given
by R�̂2R�̂1 j
i, where R�̂ � exp��i ~
 � �ẑ� �̂�kSOL	.
Similarly for propagation along the lower path, the state
in B is R�̂1R�̂2 j
i. Destructive interference occurs when
fR�̂1 ;R�̂2g � 0, f� � �g being the anticommutator. For our
setup with �̂1 � �̂2 � 0 this condition is fulfilled if
kSOL � �n
 1=2�
. A similar analysis can be carried
out for more complex structures. In particular, it can be
shown that there are bipartite linear chains with a more
complex unit cell than the diamond chain that exhibits
localization. In analogy to the AB cages, we call the
elementary square loop in our structure a Rashba cage.
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Transport properties: clean case.—In experiments the
onset of localization in a quantum network is usually
detected by transport measurements. For example, for the
AB cages the conductance is suppressed for special values
of the magnetic field. To propose a possible experimental
verification of the Rashba-cage effect we now evaluate
the linear conductance for a diamond chain of finite
length. Furthermore, to show that this localization effect
is due to the peculiar geometry of the lattice (bipartite
containing nodes with different coordination numbers),
we contrast the diamond chain with a square ladder, i.e., a
chain of square loops connected at two vertices (see the
Fig. 3 inset). In the following, we also refer to the latter
geometry simply as a ladder. We evaluate the conductance
making use of the Landauer-Büttiker formalism [22,23].
We consider a finite piece of lattice connected to semi-
infinite leads (with no SO coupling) modeling reservoirs
(see the Fig. 3 inset). To compute the transmission coef-
ficients we proceed along the lines of Ref. [5]. We inject
from the left wire an electron with spin 
 � � along a
generic direction, whose corresponding spinors are �
.
The wave functions on the external leads are simply

�left�r� � eikinr�
 

X

0

r
0
e�ikinr�
0 ; (7)

�right�r� �
X

0

t
0
e
ikinr�
0 ; (8)

where r is the coordinate on the semi-infinite input/output
lead, with the origin fixed at the position of the input/
output node.

The transmission and reflection coefficients (t
0
 and
r
0
, respectively) can be obtained by solving the linear
system of equations arising from the continuity of the
probability current at all nodes in the network and of the
wave function at the input and output nodes. The con-
ditions for the continuity of the probability current at
internal nodes are given in Eq. (3). For the external nodes
they read
0 0.2 0.4 0.6 0.8 1
k

SO
L π−1

0

0.5

1

1.5

2

<
G

>
 (

e2 h-1
)

a)

FIG. 3. (a) Conductance averaged over kin as a function of the s
line) and for the ladder (dashed line). The two finite-size system
parameters used for the calculation are 50 elementary loops and
function of the spin-orbit coupling strength for the diamond chai
value of kin � kF. The parameters used for the calculation are 50
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M 00�0 

X
h0;�i

M0��� � �i
�
�
 �

X

0

r
0
�
0

�
; (9)

M NN�N 

X
hN;�i

MN��� � i
X

0

t
0
�
0 ; (10)

where the injection node is labeled as ‘‘0’’ and the output
node as ‘‘N.’’ The total transmission coefficient is then
simply jtj2 �

P

;
0 jt
0
j

2. As can be seen by inspection
of the terms Eq. (4) appearing in the continuity equations
(setting l�� � L), all the properties are periodic in k with
a periodicity 2
=L. Furthermore, for the total conduc-
tance the period in k is halved, i.e., it is 
=L. Finite
temperature or finite voltage will introduce in a natural
way an average over kin. For max�KBT; eV	 � KBT

� �
�h2
m kF



L , the result of a transport measurement will be the

conductance integrated over kin 2 �0; 
=L	, indicated as
hG�kSO L�ikin . Taking for the Fermi energy of the single-
channel wires 10 meV, m=me � 0:042 for the effective
mass (InAs), and L � 1 �m, yields T� � 7 K.

For a given kin, the conductance has a rich structure
that takes into account the complexity of the associate
energy spectrum. In particular, increasing kSO gaps open

and the energy of the incoming electrons (�in �
�h2k2in
2m ) can

enter one of these gaps leading to a vanishing conduc-
tance but not to localization [see Fig. 3(b)]. In fact, in this
case the insulating behavior is due to the absence of
available states at the injection energy and not to the
localization in space of the electron wave function [24].
This effect is not present in hG�kSO L�ikin , as the integra-
tion over kin is equivalent to an average over energy. The
dependence of the average conductance hG�kSO L�ikin on
kSO is shown in Fig. 3(a) for both the diamond chain and
the square ladder. The conductance for both kinds of
chains has a minimum for kSO L � 
=2 due to interfer-
ence caused by the phase differences induced by the
Rashba effect. But due to the existence of the Rashba
cages, this minimum reaches zero only for the diamond
chain. In Fig. 3(b) the conductance for fixed kin for the
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pin-orbit coupling strength for the diamond chain (continuous
s connected to input/output leads are shown in the inset. The
kin uniformly distributed in �0; 
=L	. (b) Conductance as a

n (continuous line) and for the ladder (dashed line) for a fixed
elementary loops, kFL � n

 2, n being an integer.
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FIG. 4. Conductance (averaged over disorder configurations and over kin) plotted as a function of the spin-orbit coupling strength
for the diamond chain (a) and the ladder (b). The two values of the disorder strength used in the calculation are:  L � 0:01L (solid
line) and  L � 0:02L (dashed line). Disorder averaging is done over 50 configurations, and kin is uniformly distributed in �kF �

=2; kF 
 
=2	, with kFL � 100. Both systems are composed by 50 elementary loops.
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two chains is shown: for this choice of parameter, the gap
opens only for the diamond chain, while for the ladder a
rich interference pattern is present.

Transport properties: disordered case.—From the stud-
ies on the AB cages, we expect the localization induced
by the Rashba effect to be robust against disorder only in
the bipartite structure containing nodes with different
coordination numbers (diamond chain). There are several
kinds of disorder that can be considered. Potential disor-
der along the wires (for example, randomly located
pointlike scatterers) does not lead, in this purely one-
dimensional model, to a modification of the phases ac-
quired on a bond by spin precession but only to a renor-
malization of the bond transmission. The disorder that is
more dangerous for the Rashba-cage effect is a random
fluctuation of the length of the bonds (see Ref. [5]), as
such length fluctuations induce fluctuations of the phase
shifts due to spin precession. Hence, we consider a model
where the length of each bond is randomly distributed in
the interval �L� L; L
  L	. The half-width of the
distribution L gives the strength of the disorder. In order
to clarify if disorder affects the conductance, we average
over disorder configurations. This is relevant to experi-
ments, as in a real sample averaging is introduced by the
finite phase-coherence length. For intermediate values of
disorder (kF L � 1) we find that the Rashba-cage effect
is still present for the diamond chain, while the period-
icity in kSO is halved for the ladder, as shown in Fig. 4.
This latter result can be interpreted as the analog of the
Altshuler-Aharonov-Spivak (AAS) [25] effect induced by
the SO coupling. The halving of the oscillation period is
due to the enhancement of back-reflection due to inter-
ference of pair of paths traveling clockwise and counter-
clockwise along a square of the chain (according to the
weak localization picture). At higher values of disorder
the AAS effect prevails also in the diamond chain.

Finally, we expect that the results concerning the
Rashba-cage effect will not change qualitatively when
the wires are multimode if subband hybridization can be
neglected, i.e., if the spin-precession length is much
056802-4
larger than the width of the wires. However, quantitative
changes can occur due to scattering between the different
modes at the vertices of the network.
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