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In-Plane Electric Current Is Induced by Tunneling of Spin-Polarized Carriers
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It has been shown that tunneling of spin-polarized electrons through a semiconductor barrier is
accompanied by generation of an electric current in the plane of the interfaces. The direction of this
interface current is determined by the spin orientation of the electrons and symmetry properties of the
barrier; in particular, the current reverses its direction if the spin orientation changes the sign.
Microscopic origin of such a ‘‘tunneling spin-galvanic’’ effect is the spin-orbit coupling-induced
dependence of the barrier transparency on the spin orientation and the wave vector of electrons.
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FIG. 1. Origin of the tunneling spin-galvanic effect.
Asymmetry of tunneling transmission of spin-polarized car-
riers caused by spin-orbit interaction results in the in-plane
electric current near the barrier.
Spin-dependent phenomena and particularly transport
of spin-polarized carriers in semiconductor heterostruc-
tures have attracted a great deal of attention [1]. One of
the key problems of spintronics is a development of effi-
cient methods of injection and detection of spin-polarized
carriers. Among various techniques ranging from optical
orientation [2] to spin injection from magnetic materials
(see [3–6] and references therein), special attention has
been paid to the development of nonmagnetic semicon-
ductor injectors and detectors. The spin-orbit interaction
underlying such devices couples spin states and space
motion of conduction electrons and makes possible ef-
fects of conversion of electric current into spin orientation
and vice versa.

Generation of electric current by spin-polarized elec-
trons was the subject of investigations at first in bulk
materials. It was shown that scattering of a spin-polarized
electron beam by unpolarized lattice defects is asym-
metrical due to spin-orbit interaction and therefore is
accompanied by appearance of the transversal current
[7,8]. Such anomalous Hall effect driven by the concen-
tration inhomogeneity of the optically oriented electrons
was proposed in Ref. [9] and observed on the surface of
bulk AlGaAs [10].

Recently, the ability of spin-polarized carriers to drive
an electric current was demonstrated in low-dimensional
semiconductor systems. It was shown that spin relaxation
of the homogeneous spin-polarized two-dimensional
electron gas yields the electric current in systems with
linear in the wave vector k spin splitting [11]. This effect
referred to as ‘‘spin-galvanic’’ has been recently observed
in GaAs and InAs quantum well structures [12,13].

In this Letter we demonstrate the possibility of gen-
eration of an electric current by spin-polarized carriers
under tunneling through a semiconductor barrier. We
show that the spin-polarized electrons transmitted
through the barrier create the electric current flow in
the plane of the interfaces. The direction of this interface
current is determined by the spin orientation of the elec-
trons and intrinsic symmetry properties of the barrier, in
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particular, the current reverses its direction if the spin
orientation changes the sign. In contrast to the spin-
dependent currents discussed above, the proposed ‘‘tun-
neling spin-galvanic effect’’ is not related to scattering.
The microscopic origin of the effect under study is the
spin-orbit coupling-induced dependence of the barrier
transparency on the relative orientation of the electron
spin and wave vector [14,15].

The physics of the tunneling spin-galvanic effect is
sketched in Fig. 1. We assume two parts of the bulk
semiconductor separated by the tunneling barrier grown
along z direction, and the spin-polarized electron gas on
the left side of the structure. Spin-polarized electrons
with various wave vectors tunnel through the barrier. In
the absence of spin-orbit interaction the barrier trans-
parency reaches maximum for the carriers propagating
along the normal to the barrier. Spin-orbit coupling
changes this rule, the optimum tunneling transmission
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FIG. 2. Tunneling through �001�-grown semiconductor bar-
rier. V and a are the height and the width of the barrier,
respectively.
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is reached now for an oblique incidence. The barrier
transparency for the spin-polarized carriers with the
certain in-plane wave vector kk is larger than the trans-
parency for the particles with the opposite in-plane wave
vector, �kk. This asymmetry results in the in-plane flow
of the transmitted electrons near the barrier, i.e., in the
interface electric current.

Generally, the barrier transparency may depend on the
spin orientation of carriers if the system lacks a center of
inversion. Two microscopic mechanisms were shown to be
responsible for the effect of spin-dependent tunneling.
One of them is the Rashba spin-orbit coupling induced
by the barrier asymmetry [14,16–20]. The other is the k3

Dresselhaus spin splitting of the electron states in the
barrier grown of a noncentrosymmetrical material such
as zinc-blende-lattice semiconductors [15,21,22]. Both
these mechanisms lead to the generation of the interface
current when the spin-polarized electrons tunnel through
the barrier. In the present article we consider the tunnel-
ing spin-galvanic effect due to the Dresselhaus splitting
as an example.

The theory of the tunneling spin-galvanic effect is
developed by using the spin density matrix technique.
The interface current of spin-polarized electrons trans-
mitted through the barrier is given by

j k � e
X
k

�pvk�k�Tr�ĝ�k��; (1)

where e is the electron charge, �p is the momentum
relaxation time, v�k� is the velocity linked to the electron
wave vector k by the conventional expression, v�k� �
�hk=m1, m1 is the effective electron mass outside the
barrier, and ĝ�k� is the 2� 2 spin matrix which describes
the flux of the electrons transmitted through the barrier.
If the reverse tunneling flux from the right to the left side
of the structure is neglected then the matrix ĝ is deter-
mined by the electron distribution on the left side of the
barrier and the spin-dependent coefficient of transmis-
sion, and given by

ĝ � T �lT
yvz��vz�: (2)

Here �l is the electron density matrix on the left side of
the structure, T is the spin matrix of the tunneling
transmission linking the incident spinor wave function
 l to the transmitted spinor wave function  r,  r � T  l,
and �-function describes the direction of the tunneling.

We assume the carriers on the left side of the structure
to form 3D spin-oriented electron gas, and electron dis-
tributions in both spin subband to be thermalized. Thus
the density matrix has the form

�l �
fp 
 fa

2
Î 


fp � fa
2

�ns � �̂�; (3)

where ns is the unit vector directed along the spin ori-
entation, fp and fa are the distribution functions of the
electrons with the spins oriented parallel and antiparallel
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to ns, respectively, and �̂� are the Pauli matrices. For the
case of small degree of spin polarization, the density
matrix of 3D electron gas is simplified to

�l � f0Î �
df0
d"

2ps
h1="i

�ns��̂�; (4)

where f0 is the equilibrium distribution function of non-
polarized carriers, ps is the degree of the spin polariza-
tion, and h1="i is the average value of the reciprocal
kinetic energy of the carriers. The latter is equal to
3=EF for 3D degenerate electron gas with the Fermi
energy EF, and 2=kBT and 3D nondegenerate gas at the
temperature T.

We consider the tunneling spin-galvanic effect for the
symmetrical rectangular barrier grown of a zinc-blende-
lattice semiconductor along �001� direction (see Fig. 2). In
this case the barrier transparency depends on the orien-
tation of electron spin due to the k3 Dresselhaus spin-orbit
interaction. The coefficients of transmission for spin
states ‘‘
’’ and ‘‘�’’ corresponding to the most and the
less probable tunneling have the form [15]

t� � t0 exp
�
��

m2kk
�h2

aq0

�
; (5)

where t0 is the transmission coefficient when the spin-
orbit interaction is neglected, � is a constant of the
Dresselhaus spin-orbit coupling depending on the mate-
rial, m2 is the electron effective mass inside the barrier,

q0 �
��������������������
2m2V= �h2

p
is the reciprocal length of the wave

function decay in the barrier, V and a are the height
and the width of the barrier, respectively. The orientations
of the electron spin of the states ‘‘
’’ and ‘‘�’’ depend on
the direction of the electron in-plane wave vector kk with
respect to the crystal cubic axes. The spinors correspond-
ing to the spin eigen-states are given by [15]

!� �
1���
2

p

�
1

�e�i’

�
; (6)

where ’ is the polar angle of the wave vector in the xy
plane, being kk � �kk cos’; kk sin’�, and the coordinate
system x k �100�, y k �010�, and z k �001� is assumed.
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The spin matrix of the electron transmission through
the barrier is given by

T �
X
s��

ts!s!
y
s : (7)

For our case it has the form

T �
1

2

�
t
 
 t� �t� � t
� ei’

�t� � t
� e
�i’ t
 
 t�

�
: (8)

We assume spin corrections to be small. The trans-
mission coefficient t0 is suggested, for simplicity, to de-
pend only on the kz component of the electron wave
vector that is fulfilled if the electron effective masses
inside and outside the barrier coincide, m� � m1 � m2.
Then substituting the density matrix (4) and the trans-
mission matrix (8) into Eqs. (1) and (2), the interface
spin-dependent current is derived to be

jk;x � �jk ns;x; jk;y � jk ns;y; (9)

jk � 4e�
m�aq0

�h2
�p

�hh1="i
_Nps;

where _N is the flux of the electrons through the barrier,
_N �

P
kTrĝ.

The direction of the spin-dependent interface current
(9) induced by the Dresselhaus term is determined by the
spin orientation of the electrons with respect to the crys-
tal axes. In particular, the current jk is parallel (or anti-
parallel) to the spin polarization ns, if ns is directed
along the crystal cubic axis �100� or �010�; and jk is
perpendicular to ns, if the latter is directed along the
axis �1�10� or �110�.

As it was mentioned above, the tunneling spin-galvanic
effect can also be induced by Rashba spin-orbit coupling
in asymmetrical barriers. In this particular case the spin-
dependent interface current flows perpendicular to the
spin polarization of the carriers.

The estimations for the tunneling spin-galvanic cur-
rent (9) give jk � 10�6 A=cm and jk � 10�7 A=cm for
barriers based on GaSb and GaAs, respectively, for the
structures with the barrier transparency jt0j2 � 10�5 and
the momentum scattering time �p � 10�12 s.

In conclusion, it has been demonstrated that the spin-
dependent interface current is generated if spin-polarized
carriers tunnel through the semiconductor barrier. The
theory of the tunneling spin-galvanic effect has been
developed for symmetrical barriers grown of zinc-
blende-lattice compounds. The effect could be employed
for creating nonmagnetic semiconductor detectors of
spin-polarized carriers.
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