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Three-Spin Interactions in Optical Lattices and Criticality in Cluster Hamiltonians
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We demonstrate that in a triangular configuration of an optical lattice of two atomic species a variety
of novel spin-1=2 Hamiltonians can be generated. They include effective three-spin interactions
resulting from the possibility of atoms tunneling along two different paths. This motivates the study
of ground state properties of various three-spin Hamiltonians in terms of their two-point and n-point
correlations as well as the localizable entanglement. We present a Hamiltonian with a finite energy gap
above its unique ground state for which the localizable entanglement length diverges for a wide interval
of applied external fields, while at the same time the classical correlation length remains finite.
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The combination of cold atom technology with optical
lattices [1,2] gives rise to a variety of possibilities for
constructing spin Hamiltonians [3,4]. This is particularly
appealing as the high degree of isolation from the envi-
ronment that can be achieved in these systems allows for
the study of these Hamiltonians under idealized labora-
tory conditions. In parallel, techniques have been devel-
oped for minimizing imperfections and impurities [5,6]
in the implementation of the desired structures and for
their subsequent probing and measurement [7]. These
achievements permit the experimental investigation of
Hamiltonians that are of interest in areas such as quan-
tum information or condensed matter physics with the
added advantage of a remarkable freedom in the choice of
external parameters. Presently, attention both in con-
densed matter physics and in cold atom research is focus-
ing on two-spin interactions as these are most readily
accessible experimentally. However, the unique experi-
mental capability provided by cold atom technology al-
lows us to relax this restriction. Here we demonstrate that
cold atom technology provides a laboratory to generate
and study higher order effects such as three-spin inter-
actions that give rise to unique entanglement properties.

The present work serves two purposes. First, it demon-
strates that in a two species Bose-Hubbard model in a
triangular configuration a wide range of Hamilton opera-
tors can be generated that include effective three-spin
interactions. They result from the possibility of atomic
tunneling through different paths from one vertex to the
other. This can be extended to a one-dimensional spin
chain with three-spin interactions. Second, we take this
novel experimental capability as a motivation to study
unique ground state properties of Hamiltonians that in-
clude three-spin interactions. In this context one can
study possible quantum phase transitions by considering
both the classical correlation properties as well as the
entanglement properties of these systems. Specifically,
we consider the so-called cluster Hamiltonian and its
ground state, the cluster state which has previously been
shown to play an important role as a resource in the
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context of quantum computation [8]. Subject to an addi-
tional Zeeman term the combined Hamiltonian possesses
a finite energy gap above its unique ground state in a finite
parameter range, hence exhibiting no critical behavior in
the classical correlations in that regime. We shall show
that at the same time it exhibits a critical behavior in its
entanglement properties due to its three spin-1/2 interac-
tion term. This is manifested by a diverging entanglement
length of the localizable entanglement [9]. Our example
demonstrates that divergence in entanglement properties
are not necessarily related to the existence of classical
critical points, the latter giving a rather incomplete de-
scription of the long-range quantum correlations against
popular belief [10]. A related example was arrived at
independently in [11].

Consider an ensemble of ultracold bosonic atoms con-
fined in an optical lattice formed by several standing
wave laser beams [3,4,12]. Each atom is assumed to
have two relevant internal states, denoted with the index
� � a; b, which are trapped by independent standing
wave laser beams differing in polarization. We are inter-
ested in the regime where the atoms are sufficiently
cooled and the periodic potential is high enough so that
the atoms will be confined to the lowest Bloch band and
the low energy evolution can be described by the two
species Bose-Hubbard Hamiltonian [12]. The tunneling
couplings J� and the collisional couplings U��0 can be
widely varied by adjusting the amplitude of the lattice
laser fields. For the generation of the multiparticle inter-
actions discussed here we require large collisional cou-
plings in order to have a significant effect within the
decoherence time of the system. This can be achieved
experimentally by Feshbach resonances [13], for which
first theoretical [14] and experimental [15] advances are
already promising.

Let us begin by considering the case of only three sites
in a triangular configuration (see Fig. 1) with tunneling
coupling activated between all three of them. We are
interested in the regime where the tunneling couplings
are much smaller than the collisional ones, J� � U��0
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FIG. 1 (color online). The one-dimensional chain constructed
out of equilateral triangles. Three-spin interaction terms ap-
pear, e.g., between sites i, i � 1 and i 2 as, for example,
tunneling between i and i 2 can happen through two differ-
ent paths, directly and through site i 1, the latter resulting
into an interaction between i and i 2 that is controlled by the
state of site i 1.
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which corresponds to the Mott insulating phase and we
demand that we have on average one atom per lattice site.
Hence, the basis of states of site i can be defined by
j "i � jna � 1; nb � 0i and j #i � jna � 0; nb � 1i,
where na and nb are the number of atoms in state a or
b, respectively. It is possible to expand the resulting
evolution generated by the Bose-Hubbard Hamiltonian
in terms of the small parameters J�=U��0 . In an
interaction picture with respect to the collisional
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where the symbol 	a $ b
 denotes the repeating of the
same term as on its left, but with the a and b indices
interchanged. The local field ~B can be arbitrarily tuned by
applying appropriately detuned laser fields. One can iso-
late different parts from Eq. (2), each one including a
three-spin interaction term, by varying the tunneling
and/or the collisional couplings appropriately so that
particular �	i
 terms such as the two-spin interactions
vanish, while others can be varied freely.

In particular, we are interested in obtaining a whole
chain of triangles in a zigzag one-dimensional pattern as
in Fig. 1. Indeed, with this configuration we can extend
from a single triangle to a whole triangular ladder.
Nevertheless, a careful consideration of the two spin
interactions shows that terms of the form �z

i�
z
i2 also

appear, due to the triangular configuration (see Fig. 1). It
is possible to introduce a longitudinal optical lattice with
half of the initial wave length, and an appropriate ampli-
tude such that it cancels exactly those interactions gen-
erating finally chains with only neighboring couplings.
With the above procedure we can finally obtain a chain
Hamiltonian as in (2) where the summation runs up to the
total number N of the sites. A variety of different
Hamiltonians could be generated by different combina-
tions of the above techniques.

In the past, Hamiltonians describing three-spin inter-
actions have been of limited interest [17] as they were
difficult to implement and control experimentally. The
above results demonstrate that Hamiltonians with three-
spin interactions can be implemented and controlled
across a wide parameter range. One may suspect that
ground states of three-spin interaction Hamiltonians ex-
hibit unique properties as compared to ground states
generated merely by two-spin interaction. This motivates
the study of the properties of the ground state of a par-
ticular three-spin Hamiltonian for different parametric
regimes. Possible phase transitions induced by varying
these parameters are explored employing two possible
signatures of critical behavior that are quite different
in nature. In particular, new critical phenomena in
three-spin Hamiltonians that cannot be detected on the
level of classical correlations will be demonstrated.

(i) A traditional approach to criticality of the ground
state studies two-point correlation functions between
spins 1 and L, given by C�

1L � h�
1�

�
Li � h�

1 ih�
�
Li, for

varying L, where ;� � x; y; z. These two-point corre-
lations may exhibit two types of generic behaviors,
namely, (a) exponential decay in L, i.e., the correlation
length �, defined as

��1 � lim
L!1

1

L
logC�

1L ; (3)

is finite, or (b) power-law decay in L, i.e., C�
1L � L�q for

some q, which implies an infinite correlation length �
indicating a critical point in the system [10].
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FIG. 2. Both the two-point correlation length for Czz
1L (dashed

line) and the localizable entanglement length (solid line) are
shown for various magnetic field for chain of length 16. Note
that the localizable entanglement length diverges in the whole
interval jBj< 1 while the two-point correlation length is finite
in this interval.

P H Y S I C A L R E V I E W L E T T E R S week ending
30 JULY 2004VOLUME 93, NUMBER 5
(ii) While the two-point correlation functions C�
1L are

a possible indicator for critical behavior, they provide an
incomplete view of the quantum correlations between
spins 1 and L. Indeed, they ignore correlations through
all the other spins by tracing them out. Already the GHZ
state jGHZi � 	j000i  j111i
=

���
2

p
shows that this loses

important information. Tracing out particle 2 leaves par-
ticles 1 and 3 in an unentangled state. However, measur-
ing the second particle in the �x eigenbasis leaves
particles 1 and 3 in a maximally entangled state.
Therefore one may define the localizable entanglement
E	loc

1L between spins 1 and L as the largest average entan-

glement that can be obtained by performing optimized
local measurements on all the other spins [9]. In analogy
to Eq. (3) one can define the entanglement length

��1
E � lim

L!1

1

L
logE	loc


1L : (4)

It is an interesting question whether criticality accord-
ing to one of these indicators implies criticality according
to the other. The localizable entanglement length is al-
ways larger than or equal to the two-point correlation
length and indeed, it has been shown that there are cases
where criticality behavior can be revealed only by the
diverging localizable entanglement length while the clas-
sical correlation length remains finite [11]. Such behavior
is also expected to appear when we consider particular
three-spin interaction Hamiltonians. To see this consider
the Hamiltonian
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X
i
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i�1�

z
i�

x
i1  B�z

i 
; (5)

where we assume periodic boundary conditions. The fact
that �x

i�1�
z
i�

x
i1 commute for different i and employing

raising operator Ly
k � �x

k � i�x
k�1�

y
k�

x
k1 allows one to

determine the entire spectrum ofH forB � 0. The unique
ground state of H for B � 0 is the well-known cluster
state [8,18], which has previously been studied as a re-
source in the context of quantum computation. It pos-
sesses a finite energy gap of �E � 2 above its ground
state [19]. For finite B the energy eigenvalues of the
system can still be found using the Jordan-Wigner trans-
formation and a lengthy but straightforward calculation
shows that the energy gap persists for jBj � 1. The exact
solution also shows that the system has critical points for
jBj � 1 at which the two-point correlation length and the
entanglement length diverges. For any other value of B
and, in particular, for B � 0 the system does not exhibit a
diverging two-point correlation length as is expected
from the finite energy gap above the ground state.
Indeed, correlation functions such as
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(6)

can be computed and the corresponding correlation
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length can be explicitly determined analytically using
standard techniques (see, e.g., Fig. 2) [20]. The two-point
correlation functions such as Eq. (6) exhibit a power-law
decay at the critical points jBj � 1 while they decay
exponentially for all other values of B in contrast to
the anisotropic XY model whose Cxx

1L correlation
function tends to a finite constant in the limit of L ! 1
for jBj< 1 [20]. This discrepancy is due to the finite
energy gap the model in Eq. (5) exhibits above a non-
degenerate ground state in the interval jBj< 1.

When we study three-spin interactions it is natural to
consider the behavior of higher-order correlations. For
the ground state with magnetic field B � 0 all three-point
correlation except, obviously, h�x

i�1�
z
i�

x
i1i vanish.

Indeed, if we consider n > 4 neighboring sites and chose
for each of these randomly one of the operators�x;�y; �z,
or 1 then the probability that the resulting correlation will
be nonvanishing is given by p � 2�	2n
. For jBj> 0,
however, far more correlations are nonvanishing and the
rate of nonvanishing correlations scales approximately
as 0:858n. This marked difference which distinguishes
B � 0 is due to the higher symmetry that the
Hamiltonian exhibits at that point.

In the following we shall consider the localizable en-
tanglement and the corresponding length as described in
(ii). Compared to the two-point correlations, the compu-
tation of the localizable entanglement is considerably
more involved due to the optimization process. Never-
theless, it is easy to show that the entanglement length
diverges for B � 0. In that case the ground state of the
Hamiltonian (5) is a cluster state with the property that
any two spins can be made deterministically maximally
entangled by measuring the �z operator on each spin in
between the target spins, while measuring the�x operator
056402-3
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on the remaining spins. Indeed, this property underlies its
importance for quantum computation as it allows one to
propagate a quantum computation through the lattice via
local measurements [8].

For finite values of B it is difficult to obtain the exact
value of the localizable entanglement. Nevertheless, to
establish a diverging entanglement length it is sufficient
to provide lower bounds that can be obtained by prescrib-
ing specific measurement schemes. Indeed, for the ground
state of (5) in the interval jBj< 1 consider two spins 1
and L � 2k 1 where k 2 N. Measure the �x operator
on spin 2 and on all remaining spins, other than 1 and L,
the �z operator. By knowing the analytic form of the
ground state one can obtain the average entanglement
over all possible measurement outcomes in terms of the
concurrence, that tends to E1 � 	1� jBj2
1=4 for k ! 1.
This demonstrates that the localizable entanglement
length is infinite in the full interval jBj< 1. This surpris-
ing critical behavior for the whole interval jBj< 1 is not
revealed by the two-point or n-point correlation functions
which exhibit finite correlation lengths. For jBj> 1, how-
ever, numerical results, employing a simulated annealing
technique to find the optimal measurement for a chain of
16 spins, show that the localizable entanglement exhibits
a finite length scale.

In Fig. 2 both the two-point correlation length and
localizable entanglement length are drawn versus the
magnetic field. In the interval jBj< 1 the entanglement
length diverges while the correlation length remains fi-
nite. For finite temperatures the localizable entanglement
becomes finite everywhere but, for temperatures that are
much smaller than the gap above the ground state, it
remains considerably larger than the classical correlation
length. This demonstrates the resilience of this phenome-
non against thermal perturbations.

To summarize, we have demonstrated that various
Hamiltonians describing three-spin interactions can be
created in triangular optical lattices in a two-species
Bose-Hubbard model. They can be realized in the labo-
ratory with the near future cold atom technology. In fact,
a study of the required experimental values reveals that
with a tunneling coupling J= �h� 10 kHz [2] an experi-
mentally achievable collisional coupling of U= �h�
100 kHz is required. A numerical simulation for three
sites has been performed for these parameters. It demon-
strates that higher-order corrections lead to a 4% renor-
malization of the coupling strengths in Hamiltonian (2).
Note, however, that new interaction terms arise only in
5th order in perturbation due to the triangular geometry
of the optical lattice. As a consequence, a significant
effect of the three-spin interactions is obtained within
the decoherence time of the system taken here to be
10 ms. Previously, the systematic experimental creation
056402-4
of three-spin interaction Hamiltonians has been ex-
tremely difficult. The new capability for creation of such
Hamiltonians and their possible isolation from other
interactions motivates the study of the properties of their
ground states and here, in particular, of their phase tran-
sitions. Along these lines, we presented a three-spin clus-
ter Hamiltonian that exhibits a novel kind of critical
behavior that is not revealed by two-point correlation
functions. In addition, interactions such as �z

1�
z
2�

z
3 pre-

sented here have proved to be of interest for quantum
computation. They can implement multiqubit gates, like
the Toffoli gate, in essentially one step [21] reducing
dramatically the experimental resources.
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