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Robust Autoresonant Excitation in the Plasma Beat-Wave Accelerator
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A modified version of the plasma beat-wave accelerator scheme is proposed, based on autoresonant
phase locking of the Langmuir wave to the slowly chirped beat frequency of the driving lasers by
passage through resonance. Peak electric fields above standard detuning limits seem readily attainable,
and the plasma wave excitation is robust to large variations in plasma density or chirp rate. This scheme
might be implemented in existing chirped pulse amplification or CO, laser systems.
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The plasma beat-wave accelerator (PBWA) was first
proposed by Tajima and Dawson [1] and has been sub-
sequently studied by many groups [2—9] (for a review, see
[10]). In the basic scheme, two lasers copropagating in
plasma are detuned from each other by the electron
plasma frequency w, = (4mnye?/m)'/?. The beating la-
sers act ponderomotively on the plasma to resonantly
excite a large-amplitude, high-phase-velocity plasma
wave suitable for particle acceleration. The primary ad-
vantage of the PBWA over conventional accelerators is the
ability of plasma to sustain accelerating fields far in
excess of metallic structure breakdown limits.

In the original PBWA, the plasma wave is driven with a
fixed beat frequency. In this case, relativistic detuning
limits the longitudinal field E. to the, Rosenbluth-Liu
(RL) limit [11]: E. < Eg = E0[136w‘;’22 (E|\E,)/E3]'3,
where Ey = mcw / e is the cold, nonrelativistic wave-
breaking field, and w;, and E;, are the frequency and
peak electric field of the two drive lasers. Deutsch,
Meerson, and Golub [12] (DMG) proposed to overcome
this detuning effect by chirping the lasers to compensate
for the change in the nonlinear plasma frequency.

We propose a novel variant of the chirped PBWA,
exploiting a robust transition to nonlinear phase locking
(autoresonance) by adiabatic passage through resonance
[13]. Rather than starting on resonance (as did DMG), we
chirp from above resonance, slowly sweeping the beat
frequency through resonance and below. Under certain
conditions (which we calculate), the plasma wave fre-
quency locks to that of the drive. Since the nonlinear
Langmuir frequency is a function of energy, frequency
locking implies that changing the beat frequency corre-
spondingly changes the plasma wave amplitude. Our ex-
citation scheme is relatively insensitive to the exact chirp
history and precise plasma characteristics and is dis-
cussed further in [14]. Furthermore, while the previous
analysis of RL and DMG use expansions assuming
weakly relativistic electron motion, we employ a reduced
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but fully nonlinear Eulerian fluid model [5,15,16], thereby
accounting for arbitrarily relativistic electron motion.

We model the plasma as a cold, fully relativistic elec-
tron fluid in a neutralizing, stationary ionic background
and restrict our analysis to one dimension, where all
dynamical quantities depend only on the longitudinal
coordinate z and the time . We define a dimensionless
time 7 = w,, comoving position £ = w ,(t — z/v,), lon-
gitudinal velocity B = v./c, Langmuir phase velocity
B, = vp/c, vector potential @ = a; = - A, and elec-
trostatic potential ¢ = -5 ®. Our analysis is based on the
quasistatic approximation, wherein we assume that the
dynamics are independent of 7 in the comoving frame,
and the plasma wave evolves without dispersion. In this
approximation, the electron continuity and longitudinal
momentum equations can be integrated, yielding alge-
braic equations, and the Poisson equation becomes, in the
underdense limit, 8, — 1 [16],

2 2
8_2(1,:1[1“2_1} 0
a¢ 211+ ¢)

We ignore any change in the laser envelope, taking
a(&, 7) to be a prescribed function traveling at the group
velocity v, = v,,. This approximation does impose some
limitations on the laser parameters—pulse duration, spot
size, and intensity—so that diffraction, self-focusing,
and Raman instabilities, etc., do not become appreciable.

For circular polarization, the vector potential a =
slecaje + e aze +c. c] With e, =3(&+i9). The
laser frequencres wi(z, 1) = 1//1 and wave numbers

é()c 1) =3 4 satrsfy the dlspers10n relation w? =

K+ 3. Allowmg for a slow, weak frequency chirp,
we deﬁne @; =7 [l di'w;(f') to be the average carrier
frequency and take our reference group velocity v, to be
the group velocity v, w(k) evaluated at the average
frequency @ = 2(w0 + w,) Using these definitions,
linear laser propagation results in the beat phase
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The neglected terms limit the validity of the constant
group velocity approximation to lengths L less than the
dispersion length: L = Ly, ~ (@/w,)*(c/w,). Since the
useful accelerating length is already limited by the de-
phasing length, which is a factor ~@/ w, > 1 shorter
than L, this adds no additional constraints.

Defining the normalized beat frequency Aw(¢) =
(0, — w))/w,, beat phase (&)=, — ¢y, drive
strength € = aja,, and average intensity @’ =
3(a3 + a3), the slow part of the ponderomotive drive
may be written as a function of & only: a?(§) = [a*> +
€ cosi(£)]. Thus, the nonlinear response of the plasma is
described by a second-order ordinary differential equa-
tion in &:

a o, 1 1+é2+ecos¢(§)_1
e

dé? 2

To study autoresonance, we express (3) in canonical
action-angle variables. We note that (3) is Hamiltonian,
with (¢, p = d%d)) the canonical position-momentum
conjugates, and make a canonical transformation to the
action-angle variables of the free oscillator, ¢ = ¢(7, 9),
p = p(I,0). Then, the transformed Hamiltonian be-
comes

3)

a’> + ecosy(£)

-7‘[(1, 0;¢) = -7'[0(]) +m-

“)
Here, HH () describes the free nonlinear oscillator in the
absence of forcing, and the action I is defined by the
phase space area contained within an unperturbed orbit of
energy H: I = 5= ¢ pd¢. An explicit calculation of J(H)
is given in [14]. The nonlinear frequency Q(H) of the
unforced oscillator is given by

H, 1 — VH? + 2H]'/?
Q(H):aajozg[ +H E\/(II{)JF H]'? )

E(k) is the complete elliptic integral of the second kind,
and k = [2(1 + H)VH? + 2H — 2H(2 + H)]"/2. A simi-
lar expression to (5) was derived in [5], and its first order
expansion in H agrees with the result of RL. Since the
electrostatic potential ¢(7, 6) is a periodic function of 6,
we express the drive term of (4) in a Fourier series:

a’ + ecosy(£)

A1+ ¢, 6] [@® + ecos(§)] > b,y(D)e™. (6)

n=-—00

By appropriate definitions, the Fourier coefficients b, =
b*, can be made purely real, which is our convention.
Now, we further assume that the rapidly oscillating
terms of the Hamiltonian (4) average to zero and contrib-
ute negligibly to the dynamics. Under certain conditions
derived below, the dynamical frequency adjusts itself to
match that of the driving laser beats, so that (&) =
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Aw(§). In this case, the only slowly varying terms in
(6) are the constant @’b, and those whose phase varies as
¥ =0 — y(£). Neglecting all other terms as rapidly
oscillating (single resonance approximation, see, e.g.,
[17]), the action and slow phase ¥ are governed by

d abl -2 abO

— = — 4+ e— + g2 =2

dfq, Q) - Aw(é) + € ¥ cosV + a 51 @)
d .
W I = eb(])sinV. (8)

In what follows, we seek solutions to (7) and (8) for
which we have (i) an initially unperturbed plasma, (ii) an
initial tuning of the beat frequency above resonance, and
(iii) a subsequent slow downward frequency chirping
through resonance. Under (i)—(iii), we will find autoreso-
nant excitation with Aw(§) — Q(§) < 1.

When the drive is applied above resonance, the plasma
wave is small and we can linearize (7) and (8), obtaining
simple harmonic oscillator equations. Initially, the re-
sponse has two components: one ringing at the resonant
frequency, the other at the driving frequency, both of
small amplitude. The singular term 0b,/d] ~ I~1/2 in
(7) permits a large change in phase at small amplitude,
and the response at the driven frequency phase locks to
the drive [13]. As the frequency is swept toward reso-
nance, these driven, phase-locked oscillations grow,
while the response at the resonant frequency remains
small. In this way, we excite one growing, phase-locked
plasma wave.

As the system approaches resonance, we include weak
nonlinearity by expanding (5) to first order in I: Q(]) =
1- %I . We linearize the frequency chirp around the
effective plasma frequency Aw(€) =1—a*/2 — aé,
where a = — d%Aw is the chirp rate parameter. Using
the small amplitude relations by, = —%I, b, = %\/2_1,
and making the change of variable A = 4421, yields

d .

d—g.ﬂ. = ESIH“I’, (9)
d 3 5 €
— VP =af—— A2+ — :
dfq, aé 256ﬂ ﬂcos‘lf (10)

This set of equations, which is similar to the weakly
nonlinear analysis of [11,12], can be reduced to a single
first-order ordinary differential equation by defining the

complex variable Z = —/256/3a A¢'Y, rescaling ¢ =

Jaé, and defining u = €,/3/(256a°/2), obtaining
d

—Z+ (- 1ZP)Z = p. 11

Y (= 1ZP)Z=p (11)

The weakly nonlinear problem is thus reduced to an

equation with the single parameter u. This equation is

similar to the system of real Eqgs. (12) and (13) in [18],

where it was numerically found that the solution to (11)

bifurcates at the critical value u = u. = 0.411. For u <

M., the plasma wave response quickly dephases from the
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drive, resulting in small excitations. For w > u., phase
locking occurs and the plasma wave can grow to a large
amplitude. This critical behavior in w brings about a
relation between the drive strength € and chirp rate «
for the plasma wave to be autoresonantly excited:

3e2
<256M3

<

2/3
) ~ 0.15€*/3. (12)

For a given laser intensity, (12) gives the maximum laser
chirp rate consistent with high amplitude plasma waves.
The sensitivity of this critical behavior is shown for € =
0.005 in Fig. 1(a). Here, a chirp rate 1% below the critical
rate o, = 1.28 X 107 has strong frequency locking, at-
taining peak fields E, = 1.3E, while the chirp 1% above
a. quickly dephases, with a final E, = 0.6E.

If phase locking occurs, the amplitude continues to
grow and additional nonlinearities give rise to more
stringent restrictions on the chirp rate for adiabatic phase
locking to persist. We calculate this condition using the
second-order equation for the phase ¥

d2
Ozd—gzqf‘i‘é

b,

d d
inV—v + —A
6Jsm dé dé w
0%by 0%b,
a-——-—= + € —-cos

1 } (13)

We assume the action can be written as J = I, + AJ
(see, e.g., [19]), where I is the slowly varying, secularly
growing action about which there are small oscillations
given by AJ. These oscillations correspond to fluctua-
tions in ¥ about its phase-locked value ¥ = 77, as seen in
Fig. 1(a). Using I = I, + A I, the lowest-order equation
for ¥ is identical to (13), with J — I,,. Thus, the phase
obeys a nonlinear oscillator equation whose effective
“potential” is dictated by the slowly evolving action J.
For the phase to remain trapped, this potential must have
a local minimum, for which the second line of (13) is
zero. Since | sinW|, | cosW| < 1, the frequency chirp a(&)
must be sufficiently small for phase locking to persist. As
a practical limit, we set | cosW| = |sin¥| = 1 above, to
find

00
a1,

0%b,
aI3

, 92y

— | T€
aI;

0= a(f) = e|b1<10>|[ \

(14)

For a given laser power and chirp, this inequality
implicitly specifies the maximum achievable plasma
wave amplitude. We show the dependence of the saturated
E, on a for a number of different drive strengths in
Fig. 1(b). The solid lines show the stable branches of
(14), which jump discontinuously to high E, at the critical
chirp a, given by (12); the dotted lines correspond to
solutions that cannot be accessed from zero initial am-
plitude and as such can be considered a form of hysteresis.
Figure 1(c) compares the theoretical maximum amplitude
from (14) with that found by numerically integrating
Eq. (3).

Unfortunately, the PBWA does not have unlimited
time to be excited. For the parameters of interest, Mora
et al. [7] showed that the oscillating two-stream insta-
bility, with a growth rate of order the ion plasma fre-
quency  ,;, destroys plasma wave coherence after about
five e foldings. Thus, excitation time is limited to 7' <
5/w,;, and, for a total frequency change S, the chirp
rate is limited to a = (0.2w,/w ;)6 . Below, we choose
two experimental parameter sets: one for a 10 um CO,
laser; the other, for a 800 nm CPA Ti:sapphire laser.
We show that autoresonance can robustly excite large
plasma waves in times commensurate with the onset of
ion instabilities.

We use UCLA parameters [8,9] for the CO, laser
system: two 100 ps pulses at 10.27 and 10.59 pum, with
intensities a; = a, = 0.14. In this case, € = 0.02, and
(12) requires @ < 8 X 107*. We choose a = 6.5 X 10™*
over a pulse length of 100 ps, using Aw(0) = 1.15 so that
Aw(T) = 0.74. For these parameters, Fig. 2(a) demon-
strates a uniform accelerating field of 10 GV/m. For
comparison, we include envelopes of the resonant RL
case with Aw = 1, and the DMG chirped scheme with
Aw(0) = 1. The resonant case demonstrates the RL limit
with E, =< Eg = (£€)'’Ey ~ 4.2 GV/m; the DMG
scheme does not phase lock, resulting in nearly the
same accelerating field as the RL case. At UCLA, ac-
celerating gradients ~2.8 GV/m have been inferred by
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FIG. 1.

o

o

Autoresonant behavior. (a) demonstrates the critical behavior for € = 0.005. Chirp rates 1% below critical (solid line)

frequency lock to final E, = 1.3E;; chirp rates 1% above critical (dashed line) quickly dephase and saturate at 0.6E,. (b) shows
attainable E, before adiabaticity requirement (14) is violated as a function of «. The dotted lines indicate hysteresis at a, given by
(12). (c) compares theory (line) with numerically determined saturation for € = 0.005.
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FIG. 2. Simulations solving Eq. (1). (a) uses 10 wm CO, lasers with intensity 2.7 X 10'* W/cm? (e = 0.02), Aw(0) = 1.15, and
Aw = 1att =40 ps (@ = 6.5 X 1074). Peak fields of 11 GV/m are excited for a total chirp of 0.015@. (b) simulates an 800 nm
Ti:sapphire laser with @/, = 25, intensity 2 X 107 W/cm? (€ = 0.09), Aw(0) = 1.2, and Aw = 1 at t = 0.9 ps (a = 0.0025),
yielding 250 GV/m gradients with a total chirp of 0.03@®. (c) shows the robust nature of autoresonance for different initial detuning.
The CO, system excites fields of 8-12 GV/m with plasma density variations of *10%; the Ti:sapphire system is quite insensitive to

*35% errors in density, with fields = 250 GV/m.

electron acceleration [8] and fields ~0.2-0.4 GV/m have
been measured via Thomson scattering [9].

We also consider a Ti:sapphire CPA laser of duration
T = 3.2 ps (corresponding to the ion instability limit).
For two 1 J pulses compressed to 3.2 ps and focused to a
12 wm spot, we obtain intensities of 2 X 10'7 W/cm?, so
that a; = a, = 0.3 and € = 0.09. Using a singly ionized
He plasma with ng = 2.4 X 10" em ™ (w,/& = 1/25),
we choose Aw(0) = 1.2, Aw(T) = 0.5, with « = 0.0025.
The resulting accelerating field, shown in Fig. 2(b), is
~250 GV/m, more than twice the RL limit of
100 GV/m.

Autoresonant excitation is also very robust with re-
spect to mismatches between the beat and plasma fre-
quency that might result from limited diagnostics or shot-
to-shot fluctuations. Because one needs only to pass
through the resonance at some indeterminate point, no
precise matching is required. We demonstrate this robust-
ness by plotting the normalized peak field against the
initial detuning Aw(0) in Fig. 2(c) for both the CO, and
Ti:sapphire examples. In the CO, case, we see that lasers
with an initial frequency detuning =10% from the “de-
sign” of Aw(0) = 1.15 excite similarly large plasma
waves ~10 GV/m. In the Ti:sapphire case, variations in
w, = 35% from design have little effect on the accelerat-
ing gradients ~250 GV /m achieved. Note the precipitous
drop in peak field when starting near w, due to missing
the resonance; the slow decrease at high initial detuning
is caused by the limited excitation time.

We have introduced a simple modification of the DMG
scheme for the chirped-pulse PBWA in a fully relativistic
model. Rather than starting on the linear resonance and
chirping downward at some numerically estimated rate,
we sweep the beat frequency through resonance, at any
chirp rate slower than a calculated critical value. This
autoresonant excitation can drive plasma waves beyond
traditional detuning limits and appears to be rather in-
sensitive to uncertainties and variations in plasma and
laser parameters. Furthermore, autoresonant phase lock-
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ing may be used to precisely time electron injection
[20,21] to accelerate monoenergetic beams. These auspi-
cious conclusions have been derived from a simplified
model, which we believe warrants a more thorough in-
vestigation to include ion motion, higher dimensional
effects, and self-consistent laser evolution.
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