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We investigate the classical motion of three charged particles with both attractive and repulsive
interactions. The triple collision is a main source of chaos in such three-body Coulomb problems. By
employing the McGehee scaling technique, we analyze here for the first time in detail the three-body
dynamics near the triple collision in 3 degrees of freedom. We reveal surprisingly simple dynamical
patterns in large parts of the chaotic phase space. The underlying degree of order in the form of
approximate Markov partitions may help in understanding the global structures observed in quantum
spectra of two-electron atoms.
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Our understanding of the overall dynamics of gravita-
tional or Coulomb three-body problems is still very lim-
ited. This can be attributed to the large dimensionality of
the systems, the long range interactions, and the complex-
ity of the dynamics near the nonregularizable triple
collision [1]. The latter singularity dominates, in particu-
lar, the dynamics in three-body Coulomb problems such
as two-electron atoms. Wannier’s threshold law [2], as
well as experimental results on double ionization due to
single [3] or multiple [4] photon processes, shows
electron-electron correlation effects that are linked to
near triple collision events [5,6]. The excitation of two
single-electron wave packets in two-electron atoms has
recently been achieved experimentally, making it pos-
sible to study classical collision events quantum mechani-
cally [7]. The importance of the triple collision on
quantum spectra of two-electron atoms is also evident
from semiclassical treatments restricted to collinear sub-
spaces of the full dynamics [8].

We present here for the first time a comprehensive
analysis of the classical dynamics near the triple colli-
sion in two-electron atoms in the full L � 0 phase space.
Previous work has been restricted to low dimensional
invariant subspaces such as collinear configurations or
the so-called Wannier ridge [8–12]. We start by describ-
ing the dynamics at the triple collision in 3 degrees of
freedom. The topology of the singularity together with
the particle exchange symmetry strongly affects the scat-
tering signal for energies below the three-particle
breakup energy. We derive new scaling laws similar to
the Wannier threshold law [2] and show for the first time
that large parts of the phase space are highly structured
in terms of approximate Markov partitions. This is an
important step towards analyzing electron-electron cor-
relation effects found in quantum properties of two-
electron atoms [8] in terms of the overall phase space
dynamics.

Working in the infinite nucleus mass approximation
and restricting ourselves to angular momentum L � 0,
0031-9007=04=93(5)=054302(4)$22.50 
the dynamics may be described in terms of the hyper-
radius R � �r21 � r22�

1=2, the hyperangle � � tan�1�r2=r1�
with r1;2 being the electron-nucleus distances, and the
interelectronic angle �. Following McGehee [9,13], we
formally remove the triple collision singularity by em-
ploying a scaling transformation with respect to R�t�
according to pR !
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p
, and dt !

dt=R3=2 resulting for two-electron systems in equations
of motion of the form
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and Z is the charge of the nucleus; we will use Z � 2
throughout if not stated otherwise. The hyper-radius has
been eliminated from the scaled differential Eqs. (1) and
R�t� is now given implicitly through (2). The triple colli-
sion itself has been removed and the remaining singular-
ities due to two-body collisions at � � 0; �=2 can be
regularized using the Kustaanheimo-Stiefel transforma-
tion [10,14].

There are two fixed points of the dynamics (1),

� � �=4; � � �; p� � p� � 0; pR � �P0;

where P0 � 	
���
2

p
�4Z� 1�
1=2. These fixed points corre-

spond to trajectories in the unscaled phase space where
both electrons fall into the nucleus symmetrically along
the collinear axis, that is, the triple collision point (TCP)
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with pR � �P0 and its time reversed partner, the trajec-
tory of symmetric double escape, the double escape point
(DEP) with pR � P0. A true reduction in the dimension-
ality (from 5 to 4) of the problem is achieved for the
special initial condition 	H � 0 for which 	H becomes a
constant of motion. The 	H � 0 subspace that contains the
two fixed points corresponds to R � 0 orE � 0, that is, to
the dynamics at the triple collision or equivalently to the
dynamics at E � 0. We will come back to this remarkable
fact when studying the transition from E � 0 to the
dynamics for E< 0. There are three invariant subspaces
of the dynamics: the collinear spaces � � �, p� � 0 (the
eZe configuration) and � � 0, p� � 0 (the Zee configu-
ration) as well as the so-called Wannier ridge (WR) of
symmetric electron dynamics, � � �=4, p� � 0. The
eZe configuration and the Wannier ridge are connected
at the fixed points.

Linearizing the dynamics near the DEP reveals that
two of the five eigendirections, v�1;2�, lie in the WR with
eigenvalues ��1;2�

D � �	1�
���������������������������������������
�4Z� 9�=�4Z� 1�

p

P0=4;

the other three eigenvectors, v�3;4;5�, lie in the eZe space
with ��3;4�

D � �	1�
��������������������������������������������
�100Z� 9�=�4Z� 1�

p

P0=4 and

��5�
D � P0, where the subscript D refers to DEP [2]. The

unstable manifold U�5�
D along the v�5� direction is oriented

along �pR leading out of the E � 0 subspace; the un-
stable manifold U�4�

D lies in E � 0 and corresponds to a
trajectory leaving the DEP towards pR � 1. The 3D
stable manifold SD including S�i�D associated with v�i� (i �
0 (3)(4)
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FIG. 1 (color online). The PSOS � � � of the E � 0 mani-
fold in �- 	p�-pR coordinates (Z � 2). The eZe space forms the
boundary of the PSOS, the WR connects the TCP and DEP
fixed points; below, various cuts of the PSOS at fixed pR values
are shown together with the SD. The two arms of the SD
stretching from the WR towards the S�3�D on the eZe boundary
are shown as full and dashed lines, respectively. (The SD in
C-E is drawn schematically to enhance important features.)
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1; 2; 3) is embedded in the 4D E � 0 subspace. In what
follows the structure of the SD is of special importance
being responsible for the striking features in the classical
electron-impact scattering signal for total energy E< 0.
(From time reversal symmetry, one obtains for the TCP
��i�
T � ���i�

D for i � 1–5. The manifolds U�1;2;3�
T and S�4;5�T

can be obtained from the corresponding S�1;2;3�D and U�4;5�
D ,

respectively.)
We analyze first the topology and the dynamics in the

triple-collision phase space E � 0 focusing especially on
the structure of the SD. The topology of the space E � 0 is
most conveniently studied by considering the 3D
Poincaré surface of section (PSOS) � � � in �-p�-pR
coordinates. From (2), one obtains that the eZe configu-
ration forms the boundary of the PSOS; see Fig. 1. A
typical scattering event follows a trajectory coming from
infinity with pR � �1, � � 0 or �=2 and one of the two
electrons leaving towards infinity with pR ! 1, � !
�=2 or 0. After lifting the singularity at � � 0 or � by
considering 	p� � p� sin2�, the topology of the eZe
phase space takes on the form of a sphere with four points
taken to jpRj � 1; see Fig. 1 [9]. The two fixed points are
located at the saddles between the arms stretching in
forward and backward directions along the pR axis. The
WR space connects the TCP and DEP along the axis � �
�=4, 	p� � 0; see Fig. 1. It is a compact manifold with the
topology of a S2 sphere where the fixed points form
opposite poles.

For 	H � 0, we have _pR  0, which leads to a relatively
simple overall dynamics. Its important features can be
characterized by the behavior of the stable or unstable
manifolds of the fixed points.Various cuts of the SD in the
PSOS for fixed pR < P0 are shown in Fig. 1. The SD is for
�P0 � pR � P0 bounded by the 1D stable manifold S�3�D
in the eZe space, and the 2D WR. That is, the SD is the
stable manifold of the WR. What makes the evolution of
this manifold remarkable is its behavior at the TCP at
pR � �P0, where the phase space itself splits into two
distinct parts. Starting at pR � P0 and going towards
decreasing pR values, which corresponds essentially to
an evolution of the SD backwards in time, the SD under-
goes the usual stretching and folding mechanism typical
for an unstable manifold in compact domains. The
stretching and folding is here facilitated by an overall ro-
tation of the space around the WR axis � � �=4; 	p� � 0
and a certain ‘‘stickiness’’ near the binary collision points
� � 0 or �=2; see the cuts B and C in Fig. 1 [14]. As
pR ! �P0, the phase space develops a bottleneck,
whereas the SD stretches over the whole phase space
5 times by now. As pR decreases further passing through
�P0, the SD is cut at the TCP into distinct parts; see D in
Fig. 1. The TCP itself, however, is not part of SD. Points
close to the TCP leave the fixed point along the stable
manifold S�4�T in eZe space towards pR ! �1. In each
arm exactly five pieces of the SD come together at the S�4�T
for pR <�P0 forming two loops and one connection to
054302-2
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the eZe boundary; see Fig. 1E. The S�4�T is thus not part of
the SD, but forms a boundary of that manifold. (The S�4�T
can in this sense be regarded as the preimage of the
heteroclinic intersections of the UT and SD occurring
for pR >�P0.) There are therefore two main routes
towards the DEP for electrons coming in from pR �
�1 close to the eZe boundary: the first route approaches
the TCP on one of the five leaves of the SD close to the
stable manifold S�4�T and moves then along the WR to-
wards the DEP; second, trajectories can approach the
DEP ‘‘directly’’ by moving on the SD in the vicinity of
the S�3�D . This twofold approach is essential for under-
standing the dynamics in the E< 0 space.

We now turn to the full dynamics in the 5D E< 0
phase space. We analyze one-electron scattering signals
where electron 1, say, starts at r1 � 1 with energy E1 and
fixed total energy E � �1. We record the time delay of
the outgoing electron. (Note that fixing E � �1 is suffi-
cient as changing the total energy amounts to a simple
scaling transformation in the dynamics [10]). A smooth
transition of the dynamics from E< 0 towards E � 0 is
achieved by considering the limit E1 ! 1, E2 ! �1
and E1 � E2 � �1. The inner electron is then initially
bounded infinitely deeply in the Coulomb well, and in-
teractions between the incoming and bound electrons take
place at R ! 0 and thus 	H ! 0. The dynamics in E � 0 is
in this sense equivalent to the dynamics at the triple
collision point R � 0, and the phase space flow at E � 0
can be smoothly continued to the flow in the full E � 0
space. Trajectories close to 	H � 0 follow the dynamics in
the triple collision space except near the fixed points
where the flow close to the manifold E � 0 is perpen-
dicular to that manifold along v�5� � �pR.

In Fig. 2, a typical signal for the scattering time � is
shown, here for � � �=2 and E1 � 0:2, where � is the
interelectronic angle for r1 ! 1. (We have chosen zero
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FIG. 2 (color online). The time-delay signal for � � �=2 and
E1 � 0:2; five distinct peaks appear in the ‘‘dips’’ associated
with close encounters with the triple collision point. Note that
delay times are shown on logarithmic scales.

054302-3
angular momentum of both electrons initially). ’ 2
	��;�
 parametrizes the starting point along one revo-
lution of the trajectory of the inner electron. Disregarding
the finer structures of the signal at the moment, two main
features emerge, a dip in the scattering time around ’ �
�1:0 and a chaotic scattering interval (CSI) around 0:2<
’< 2:2. The dip can be associated with trajectories close
to ST near S�4�T , which move towards the TCP. Most of
these events lead to immediate, fast ionization of one of
the two electrons due to the large momentum transfer
possible near the triple collision singularity causing the
dip in the scattering time. Note that the 2D stable mani-
fold ST is completely embedded in the eZe configuration;
it is not possible to reach the TCP from outside the eZe
region.

Chaotic scattering occurs, on the other hand, if trajec-
tories approach the DEP close to the stable manifold SD
via the direct route near S�3�D . The 3D stable manifold of
the DEP is part of the E � 0 space, and the DEP can thus
be reached for E< 0 only in the limit E1 ! 1. Orbits
close to the S�3�D will, however, also come close to the DEP
where they either follow U�4�

D leading to ionization or fol-
low U�5�

D along the pR axis perpendicular to the 	H � 0
manifold. In the latter case, _pR changes sign and electron
trajectories fall back towards the nucleus having equidis-
tributed their momenta in such a way that chaotic scatter-
ing becomes possible. The DEP thus acts as a turnstile for
entering into a chaotic scattering region of the full phase
space. By time-reversal symmetry, the TCP acts as the
exit gate for single electron ionization.

A closer analysis of the strongly fluctuating signal in
the CSI reveals a series of dips flanked by singularities in
the delay time on either side; see Fig. 2. The dips corre-
spond to orbits, which, after having spent some time in
chaotic motion, leave the chaotic region by coming close
to the TCP along the stable manifold S�5�T . The borders
of these intervals are given by orbits escaping asymp-
totically with zero kinetic energy of the outgoing elec-
tron. All these escaping regions can be labeled uniquely
by a finite binary code reflecting the order in which
binary near-collision events take place after entering
and before escaping the chaotic region. The mecha-
nisms leading to escape and to the existence of a binary
symbolic dynamics forming a complete Smale horseshoe
are well documented and understood for the eZe configu-
ration [9,10]. It is surprising that this mechanism holds in
principle also far away from the eZe regime down to
initial interelectronic angles of the order � � �=4.

There is one major difference between the scattering
signal for the collinear eZe space and the dynamics for
� � �: additional structures emerge at the center of the
dips; see Fig. 2. When enlarging the regions near the dips
both at the primary dip and in the CSI, one finds five
separate peaks and, on further magnification, each of
these peaks breaks up into a chaotic scattering signal
054302-3
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FIG. 3 (color online). Energy scaling of both the widths of
the primary CSI �CSI (see Fig. 2) for � � �;�=2, and �=3, as
well as the widths of the five peaks �5p (here for � � �=2), is
shown; the scaling agrees with � � 1:055 893 2 . . . for Z � 2.
To the right, the width, �CP, of the center peak of the five peaks
is shown as a function of �� � (for fixed E1) with scaling
exponent  � 6:223 573 . . . .
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similar to the primary pattern. One finds in this way a
whole sequence of self-similar structures where dips give
birth to CSI’s which in turn have second generation dips
containing five peaks, etc. Such a sequence leading up to
the second generation CSI is shown in Fig. 2.

These phenomena can be explained in terms of the
dynamics in the triple collision space 	H � 0 discussed
earlier. The dips represent close encounters with the TCP;
whereas in the eZe space, the only route away from the
TCP is along the unstable manifold U�3�

T , for � � �
another route opens up: escape along the WR and thus
along parts of the SD leading back to the DEP and to
reinjection into the chaotic scattering region. The exis-
tence of the five peaks in each of the dips is thus a clear
manifestation of the stretching, folding, and cutting
mechanism of the SD in the 	H � 0 dynamics. A closer
analysis reveals that the center peak (CP) of the five
peaks corresponds to the part of the SD connected to
the WR; the outer peaks contain orbits which move away
from the WR after passing the TCP and before entering
the DEP region. By repeatedly moving from the DEP to
the exit channel, the TCP, and then along the WR back to
the DEP, it is possible to create increasingly longer cycles
of chaotic scattering events. We do thus encounter here a
rather curious dynamical feature, namely, a Smale horse-
shoe, whose entrance and exit points are short circuited
by a degenerate heteroclinic manifold, the WR, connect-
ing the two fixed points sitting at these turnstile gates.

The features described above imply scaling laws for the
width � of the CSI’s for E1 ! 1. In this limit, trajecto-
ries that will enter the chaotic scattering region alongU�5�

D
need to come closer and closer to the DEP. The size of this
phase space region near the DEP is limited by ejection
along U�4�

D . A simple estimate yields �� E��
1 with � �

��4�
D =��5�

D . The universality of this scaling law for both
primary and secondary CSI’s is shown in Fig. 3 and
demonstrates that the DEP is indeed the sole entrance
gate into the chaotic scattering region. The exponent � is
the so-called Wannier exponent, which plays a crucial
role in Wannier’s threshold law for E> 0 [2] and is also of
importance for quantum resonance widths [15]. A similar
scaling law can be deduced for the CP; the phase space
volume that can be transferred from the TCP to the DEP
along the WR scales in the eZe limit � ! � like �CP �

��� �� E��
1 with  � ��3�

T =Re	��1�
T 
 � ��3�

D =Re	��1�
D 
;

see Fig. 3.
Our analysis suggests that the Markov partition lead-

ing to the symbolic dynamics of the eZe space remains
largely intact over a substantial part of the L � 0 phase
space with the only modification that the number of
symbols increases from 2 to at least 2� 5 � 7. The ex-
istence of such a partition in this high-dimensional prob-
054302-4
lem is not obvious and may be the key for explaining long
range electron-electron correlation effects and ultimately
approximate quantum numbers observed in two electron
atoms [8].
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