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Critical Frequency in Nuclear Chiral Rotation
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Self-consistent solutions for the so-called planar and chiral rotational bands in 132La are obtained for
the first time within the Skyrme-Hartree-Fock cranking approach. It is suggested that the chiral
rotation cannot exist below a certain critical frequency which under the approximations used is
estimated as �h!crit � 0:5–0:6 MeV. However, the exact values of �h!crit may vary, to an extent,
depending on the microscopic model used, in particular, through the pairing correlations and/or
calculated equilibrium deformations. The existence of the critical frequency is explained in terms of
a simple classical model of two gyroscopes coupled to a triaxial rigid body.
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Chirality is an important phenomenon on the subato-
mic scale, in particular, in nuclear structure physics. Yet,
the mathematical realizations of the associated symmetry
operator encountered in the literature sometimes differ.
As discussed in [1], the R̂T operator, the product of the
time reversal and a rotation through 180�, provides a
possible realization of this symmetry in nuclei. Since
R̂T is a dichotomic symmetry [�R̂T�2 � 1], its spontane-
ous breaking leads to doublets of closely lying rotational
bands. Recently, pairs of bands that may originate from
the breaking of R̂T symmetry have been found in the A �
130 nuclei [2]. It has been suggested in [3] that R̂T

symmetry may be violated in these nuclei if one proton
occupies a low substate of an h11=2 orbital, and one
neutron hole is left in a high h11=2 substate. The former
drives the nucleus towards elongated shapes, while the
latter towards oblate ones. The interplay of these opposite
tendencies may result in a shape resembling a triaxial
ellipsoid. In the triaxially deformed potential, the particle
and hole prove to align their angular momenta along the
short (s) and the long (l) axes, respectively. As expected
from the hydrodynamical model of rotation [4], the mo-
ment of inertia with respect to the medium (m) axis is the
largest, favoring the collective rotation around this
axis. Thus, the total angular momentum vector has non-
zero components on all the three axes. If those three
component-vectors form, say, a left-handed set, then R̂T

will transform them into a right-handed one. The result-
ing set cannot be superposed with the original one by any
rotation, and we say, according to Kelvin’s definition, that
the system manifests chirality.

The newly found doublet bands [2], were extensively
studied within the particle-rotor model [5] that supported
their possibly chiral character. These bands can also be
examined within the microscopic cranking approach, in
which the wave function of the rotating nucleus is ap-
proximated by the Slater-determinant solution to the
single-particle (SP) Routhian
0031-9007=04=93(5)=052501(4)$22.50 
ĥ 0 � ĥ�! � Î; (1)

where ! � f!x;!y;!zg denotes three Lagrange multi-
pliers (sometimes interpreted as rotational frequencies),
Î is the angular momentum operator, and ĥ represents the
mean field Hamiltonian. The chirality can be accounted
for within the three-dimensional tilted axis cranking
(TAC) method [6], which allows for an arbitrary orienta-
tion of the angular momentum vector in the intrinsic
frame. The TAC chiral solutions have already been ob-
tained with phenomenological mean field [7]. The present
work reports on the first application of the self-consistent
Hartree-Fock (HF) method, in which the mean potential
is generated entirely from an effective two-body interac-
tion. Such an approach is based on a more funda-
mental formalism, provides a strong test of the chiral
geometry, and includes important effects such as current
polarizations.

Realistic Skyrme interactions, SLy4 [8] and SKM* [9]
were used in the HF calculations. The parity was kept as a
conserved symmetry, and the pairing correlations were
not included. The calculations were done using the code
HFODD (v2.05c) [10,11] working in the harmonic oscilla-
tor basis. Twelve spherical shells were taken; increasing
this number up to 16 changes the quantities of importance
(deformation, moments of inertia, alignments, etc.) by
less than 1%. The present study focuses on the discussed
�h111=2�h

�1
11=2 configuration in 132La. In all HF solutions

found, a stable triaxial deformation of � � 0:25 and � �
45� was obtained.

To study the rotational properties in question, it is
instructive to examine how a valence h11=2 proton particle
and an h11=2 neutron hole respond to rotation. This can be
done by using the standard principal axis cranking (PAC).
Cranking about the ith principal axis (i � s;m; l) with
frequency !i gives the angular momentum alignment ji
on this axis. The calculated SP alignments of the valence
particle and hole are given in Fig. 1. At ! � 0, the
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FIG. 1. Single-particle alignments of the valence h11=2 proton
particle and neutron hole, obtained from the HF PAC calcu-
lations with the SLy4 force, for cranking about the short,
medium, and long axes.
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particle and the hole do indeed orient their spins, jp and
jh, on the short and long axis, respectively. The response
of jp and jh to rotation is rather weak, meaning that the
SP wave functions are strongly constrained by deforma-
tion (deformation-alignment). These results can be sum-
marized as

jp ’ ss1̂s � �Jp!; jh ’ sl1̂l � �J h!; (2)

where 1̂s and 1̂l are the unit vectors along the short and
long axes, respectively. Therefore, to a reasonable ap-
proximation, the odd particle and hole can be treated
like gyroscopes of spins ss and sl, rigidly fixed along
the short and long axes, while small coefficients �Jp and
�J h, can be incorporated into the total inertia tensor J .

The same PAC calculations provide the total align-
ments, Ii, that are plotted in Fig. 2. At zero frequency,
cranking around the medium axis gives a vanishing an-
gular momentum, while those around the other two axes
give nonzero values equal to the SP alignments of the odd
particle and hole, ss and sl, respectively. The dependence
of Ii on !i is nearly linear, like for the rigid rotation, and
the corresponding slopes give the microscopic collective
moments of inertia associated with the principal axes, J s,
Jm, and J l. They already contain the contributions, �Jp

and �J h of Eq. (2).
FIG. 2. Similar to Fig. 1, but for total alignments.
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The microscopic PAC results presented so far suggest
that the considered system can be modeled with the help
of two gyroscopes of spins ss and sl rigidly fixed along
the short and long axes of a triaxial rigid rotor charac-
terized by the inertia tensor J . We have checked within
the HF TAC method that the off-diagonal components of
J are negligibly small; in the model we set the diagonal
components equal J s, Jm, J l. It is instructive to solve the
associated problem of the motion in a classical frame-
work and show that it faithfully represents salient fea-
tures of the HF TAC solutions.

The angular momentum of the considered system reads
I � J!� s, where s � ss1̂s � sl1̂l is the vector sum of
the spins of the gyroscopes. As in the cranking model,
only uniform rotations (! constant in the body-fixed
frame) will be considered. In this case, the Euler equa-
tions for rigid bodies [12] take the form !
 I � 0, thus
requiring that ! and I be parallel, like in self-consistent
cranking solutions (Kerman-Onishi theorem [13]). These
equations can easily be solved; a similar problem has
been treated already in [14]. However, to show analogies
with the HF method, here the variational principle will be
employed. The Lagrangian of the system is equal to the
sum of kinetic energies of the rotor and gyroscopes,

L � Ekin �
1

2
!J!�! � s ; (3)

the corresponding Hamiltonian H � ! � I� L. For the
uniform rotation, L is independent of time, hence the
minimization of the action integral

R
Ldt is equivalent to

minimizing the Lagrangian as a function of the intrinsic-
frame components of ! for a fixed ! � j!j. The solu-
tions for uniform rotations can equally be obtained by
finding extrema of the function R � �L � H �! � I,
which is the classical Routhian. Note that in the self-
consistent cranking theory an analogous Routhian is
minimized within the space of Slater determinants.
Extrema of R at a given ! can be found by using a
Lagrange multiplier � for !2. Setting to zero the deriva-
tives of the quantity

R�
1

2
�!2 �

1

2
���� J s�!

2
s � ��� Jm�!

2
m

� ��� J l�!
2
l � � �!s ss �!l sl� (4)

with respect to !m, !s, !l, we obtain

!m��� Jm� � 0; (5a)

!s � ss=��� J s�; (5b)

!l � sl=��� J l�: (5c)

Equation (5a) gives either !m � 0 or � � Jm, leading to
two distinct classes of solutions.

Planar solutions.—If !m � 0, then both ! and I lie in
the s-l plane where also the spins of the gyroscopes are
located. This gives planar solutions, for which the chiral
052501-2
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symmetry is conserved. All values of � are allowed, and
the Lagrange multiplier must be determined from given
!. Figure 3(a) shows ! versus � for sample model
parameters extracted from the HF PAC calculations, see
Table I. The solutions marked as A and D exist for all
values of !. Above some threshold frequency, !thr, there
appear two more solutions, (B, C). One finds easily

!thr � ��ss�2=3 � �sl�2=3�3=2=jJ l � J sj: (6)

For the present case, !thr > 1 MeV= �h.
Chiral solutions.—For � � Jm, all values of !m are

allowed, while the ! components in the s-l plane are
fixed at !s � ss=�Jm � J s� and !l � sl=�Jm � J l�.
Consequently, the angular momentum has nonzero com-
ponents along all three axes and the chiral symmetry is
broken. For each value of! there are two solutions differ-
ing by the sign of !m, and thus giving the chiral doublet.
Note that for !m � 0 the chiral solution coincides with
the planar A band. The fact that !s and !l solutions are
constant leads to the principal conclusion that chiral
solutions cannot exist for ! smaller than the critical
frequency

!class
crit �

��
ss

Jm � J s

�
2
�

�
sl

Jm � J l

�
2
�
1=2
: (7)

Its values for the parameters J s;m;l and ss;l extracted from
the HF PAC calculations are listed in Table I.

Figure 3(b) presents the energy vs spin for the solutions
to the classical model. At low spins, the yrast line co-
incides with the planar band D. Then it continues along
the planar band A. Since the moment of inertia Jm is the
largest, beyond the critical frequency the chiral band
becomes yrast, thereby yielding good prospects for ex-
perimental observation. These results agree with the HF
TAC solutions, see Fig. 5.

Coming to the actual TAC calculations, by applying
rotational frequency with nonzero s and l components, a
HF planar band corresponding to the classical solution A
FIG. 3 (color online). (a) Rotational frequency ! � !���
and, (b) Energy E � E�I� for the four planar bands (marked
A, B, C, D) and the chiral doublet (lines marked ‘‘chiral’’)
obtained in the classical model. The model parameters, J s;m;l
and ss;l, are extracted from HF PAC calculations with the SLy4
force (see Table I).
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was obtained. At zero frequency, the angular momentum
is just s � ss1̂s � sl1̂l. Since ss and sl are almost equal,
the initial tilt angle (between ! and the long axis) is very
close to 45�. With increasing !, the angular frequency
vector tilts more and more towards the long axis, because
J l > J s. This HF evolution of ! is well reproduced by
the classical model, see Fig. 4.

In order to obtain the chiral solutions, to each con-
verged point of the planar band a cranking frequency
with nonzero m component was applied. Chiral rotation
appeared above some finite frequency !HF

crit, given in
Table I, while points of the planar band were obtained
for lower frequencies. This confirms the existence of the
critical frequency within the Skyrme-HF method. The
evolution of ! along the HF chiral band is shown in
Fig. 4. There is again a qualitative agreement with the
classical result and indeed, for ! � !HF

crit, the HF chiral
and planar solutions coincide. Together with the critical
frequencies, Table I lists the corresponding critical spins
Iclasscrit and IHFcrit. The HF results are not much, but system-
atically higher than the classical estimates.

The pure HF method does not take into account the
pair correlations (superfluidity). To examine their pos-
sible role, PAC calculations within the total routhian
surface (TRS) approach [15] were performed, with a
phenomenological mean field and pairing in the usual
pairing–self-consistent form. Deformation of � � 0:20
and � � 25� was obtained. TRS effectively interchanges
the values of J s and J l, and enlarges Jm roughly twice
with respect to the HF results. Qualitatively, these
changes in the moments of inertia can be understood as
consequences of the change in triaxiality �. It is clear
from Eq. (7) that an increase in Jm may significantly
lower the values of !class

crit and Iclasscrit , see Table I. However,
including pairing in the full HF TAC calculations
(Hartree-Fock-Bogolyubov method) will be necessary
to give more complete description.

The critical frequency represents the transition point
between planar and chiral rotation. This transition is
abrupt in the semiclassical cranking model, but rather
TABLE I. Moments of inertia J s;m;l [ �h2=MeV] and initial
alignments ss;l [ �h] obtained from HF and TRS PAC calcula-
tions together with the resulting values of the critical frequency
and spin, !class

crit [MeV= �h] and Iclasscrit [ �h], estimated from the
classical model. Corresponding results from the full HF TAC
calculations, !HF

crit and IHFcrit, are also given.

J s Jm J l ss sl !class
crit Iclasscrit !HF

crit IHFcrit

SLy4
8.45 36.0 23.7 5.60 5.21 0.47 16.4 0.60 20.3

SKM*
8.81 35.9 23.5 5.60 5.06 0.46 15.9 0.54 17.8

TRS
15.7 65.6 9.33 6.33 4.23 0.15 9.2
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FIG. 4 (color online). Trajectory of the angular frequency
vector in the intrinsic frame along the HF planar and chiral
bands obtained with the SLy4 force, compared to the classical
predictions. Scales are given in MeV= �h.

FIG. 5 (color online). Energies from the HF TAC and from
the classical model, compared to the experimental data in
132La. The band marked ‘‘old’’ is the previously known candi-
date chiral partner [5]; the one marked ‘‘new’’ is the newly
discovered third band [18]. (All bands are of the same parity.)
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smooth in the fully quantum case. This is because the
angular momentum vector oscillates about the planar
equilibrium below !crit (corresponding to nonuniform
classical rotations [16]), and it can still tunnel between
the left and right chiral minima above !crit (chiral vi-
brations [2]). Since the mean-field approach does not take
into account the interaction between the two minima, the
HF chiral doublets are exactly degenerate. Therefore, the
experimental splitting between the chiral partners cannot
be calculated, and one can directly compare with experi-
ment only the average trends and the value of the critical
frequency or spin.

For some time, a closely lying side band in132La has
been interpreted as the chiral partner of the yrast band
[5,17], but recently a third neighboring band was discov-
ered [18], see Fig. 5. Whichever of them is the actual
chiral partner, they are both located just below the HF
TAC values of IHFcrit, and just above the classical estimate
Iclasscrit evaluated for the TRS PAC case. Their closeness to
the possible values of Icrit suggests that they may represent
a transition between planar and chiral rotation. At low
spins, where the two candidate partners are not seen, the
yrast band is well reproduced by the HF planar solution,
see Fig. 5; at higher spins the correspondence is rather
semiquantitative.

In summary, planar and chiral TAC solutions were
found for the first time within a fully self-consistent
microscopic approach and it has been shown that static
chiral rotation can only take place above some finite
angular frequency !crit. Basic features of the HF TAC
bands can be understood in terms of a classical model that
also gives an analytical estimate for !crit. From the
present HF calculations without pairing, the value of
!crit is rather high as compared to the experimental
candidate chiral bands in 132La. It seems that pairing
can lower this value, and that the observed bands actually
lie in the transitional region between planar and chiral
rotation. Apart from taking into account pairing, further
research may employ techniques beyond the mean field,
which will allow to calculate the chiral splitting in the
microscopic way.
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