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Kaon in-medium masses and mean-field potentials are calculated in isotopically symmetric pion
matter to one loop of chiral perturbation theory. The results are extended to BNL RHIC temperatures
using experimental data on �K scattering phase shifts. The kaon in-medium broadening results in an
acceleration of the � ! K �K decay. The increased apparent dilepton branching of the � mesons,
observed recently by the NA50, NA49, and PHENIX Collaborations at RHIC, is interpreted in terms of
rescattering of secondary kaons inside the pion matter.
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The theoretical study of kaon properties in a dense
nuclear environment has a long history [1–3]. To search
for signals of predicted in-medium modifications at high
baryon densities is one of the primary goals of the experi-
ments devoted to the measurements of kaonic observables
in heavy-ion reactions at intermediate energies [4].
Corresponding transport calculations revealed significant
evidence for in-medium modifications of the kaon prop-
erties during the course of such reactions [5,6].

In heavy-ion reactions at energies reached at the BNL
Relativistic Heavy Ion Collider (RHIC), the physical
conditions are quite different. The medium is baryon
dilute but meson rich [7]. Since by far the most abundant
particles are pions, one can speak about pion matter
created in heavy-ion collisions at RHIC energies. It is
therefore interesting to consider the modifications of
kaon properties in such a pion-dominated medium. This
question is also important from another point of view:
The � meson is considered as a promising mesonic probe
for the fireball formed in such reactions [8].

Possible modifications of the �-meson dilepton
branching in a pion gas had been discussed one decade
ago in Refs. [9,10]. The ���� yield from � decays was
recently measured in central Pb� Pb collisions at CERN
by the NA50 Collaboration [11] and the K �K yield was
measured by the NA49 Collaboration [12]. The number of
� mesons detected through the dilepton channel was
found to be a factor of 2 to 4 greater than that of �
mesons detected through the kaon channel. This differ-
ence might be attributed to in-medium � and K mass
shifts [10] and/or rescattering of the secondary kaons in
hadronic matter [13,14]. Recently, preliminary � meson
production data in Au� Au collisions at RHIC energies
were reported by the PHENIX Collaboration [15]. In this
experiment, the � yield was simultaneously measured in
the � ! e�e� and K �K channels. The result is consistent
with an increased dilepton branching.

The kaon-pion gas was studied in detail within chiral
perturbation theory (ChPT) in Ref. [16], focusing thereby
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on the quark condensates. In this Letter, we discuss
modifications of the kaon self-energy operator ��p2; E�
and of the � ! K �K decay mode inside hot pion matter.
ChPT, proposed for a description of interactions of pseu-
doscalar mesons at low energies, is an adequate tool for
studying the problem at low temperatures and useful to
control the low temperature limit of phenomenological
models.

The in-medium mass operator of kaons, ��p2; E�, can
be expressed in terms of the �K forward scattering
amplitudes for on-shell pions and off-shell kaons. The
on-shell �K amplitudes have been calculated in ChPT to
the order p4 by several authors (see, e.g., [17] and refer-
ences therein). To lowest order p2, the off-shell �K am-
plitudes are given in Ref. [18]. Near the threshold, the
isospin even and odd �K scattering amplitudes can be
written as

A��s; t; p2� � 8�
���
s

p
	a�0 � p
2�b�0 � 3a�1 � �

3
2ta

�
1 �

� c��p2 �M2
K�; (1)

where a�‘ and b�‘ are the �K scattering lengths and
effective ranges, p
 � p
�

���
s

p
;M�;MK� is the c.m. mo-
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�p0
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2, p � �E;p� is the kaon momentum, and p2 �

M2
K in general.
The number densities of pions are given by Bose dis-

tributions,
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;

where ��� � ���� is the �� chemical potential, ��0 �
0. The scalar pion density is defined by
dns� � dnv�=�2E��.

The sum of the forward ��K, �0K, and ��K scatter-
ing amplitudes can be integrated over the pion momenta
in the rest frame of the medium to obtain the K-meson
self-energy operator:
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���p2; E� �
Z
A��s; 0; p2��dns�� � dns�0 � dns���

�
Z
A��s; 0; p2���dns�� � dns���: (2)

Near threshold, the amplitudes A��s; t; p2� can be ex-
panded up to O	s� �M� �MK�

2� �O�p2 �M2
K�, in

which case the self-energy operator can be written as
follows:

���p2; E� � �p2 �M2
K��Z

�1
K � 1� � �M2

K � 2EVK:

(3)

This representation allows one to identify �MK as a mass
shift and VK as an external vector potential. The poles of
the propagator appearing at p2 �M2

K � ��p2; E� � 0 de-
termine the in-medium kaon dispersion law,

E���
K �p� � �

������������������������������������
p2 �M2

K � �M2
K

q
� VK: (4)

Using current algebra predictions for the threshold
�K-scattering parameters [18], one gets

Z	0��1
K� � 1�

ns�� � ns�0 � ns��

2F2 ; (5)

�M	0�2
K� � 0; (6)

V	0�
K� � �

nv�� � nv��

4F2 ; (7)

where F � 92 MeV is the pion decay constant.
Ambiguities in the off-shell amplitudes due to different
parametrizations of the pion field can be fixed at the tree
level using the Adler self-consistency condition [18].
Equations (3)–(7) are valid in tree approximation to first
order in the pion density.

The results for K0 and �K0 can be obtained from isospin
symmetry: �M	0�

K� � �M	0�
K0 � �M	0�

�K0 � 0 and V	0�
K� �

�V	0�
K� � �V	0�

K0 � V	0�
�K0 . Since at RHIC energies

��������
sNN

p
�

200 GeV the charged pion number ratio n��=n�� is very
close to unity [19], the pion isovector density and the
potential V	0�

K are negligible.
It is worthwhile to notice that the kaon dispersion

law in nuclear matter has a similar structure with a
negative mass shift �M2

K < 0 and a potential VK� �
�VK� > 0 [1,2,5].

For pions, the current algebra [18] gives Z�1
�� � 1 �

�ns�� � ns���=F2, Z�1
�0 � 1 � 2ns�0=F2, �M2

�� �

M2
�ns�0=F2, �M2

�0 � M2
��ns�� � ns�� � ns�0�=F2,

V�� � ��ns�� � ns���=F2, and V�0 � 0. The pion
mass correction at �� � 0 is in agreement with Ref. [20].

To lowest order ChPT isospin symmetric pion matter
does not change the kaon dispersion law. The leading
order effect appears at the one loop level. The effective
mass of a quasiparticle has then to be determined from
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the relation 1=meff � @2"�p�=@jpj2 at p � 0, where "�p�
is the single particle energy. The vacuum ChPT correc-
tions to the kaon self-energy are absorbed by M2 and the
vacuum renormalization constant of the kaon propagator
and renormalize the scattering amplitudes (1). To lowest
order in ��p2; E� � O�nv�, one obtains

"�p� � Ep �
��M2

K; Ep�

2Ep
;

with Ep � �
�������������������
p2 �M2

K

q
. The mean-field potential,

VK �
1

2

@��M2
K; E�

@E

��������E�MK

; (8)

leads automatically to the correct dispersion law (4) to
order O�p2nv�. Given that the potential VK is known, the
mass shift can be found from the equation

�MK � VK �
��M2

K;MK�

2MK
: (9)

The values ��M2
K;MK�, �MK, and VK can be expressed

in terms of the s- and p-wave scattering lengths and the
s-wave effective ranges. Using Eqs. (1) and (2), we obtain

��M2
K;MK� � �4�nv

M� �MK

M�
a�0 ; (10)

and

VK � �
2�nv

M� �MK
	a�0 � 2M�MK�b

�
0 � 3a�1 ��: (11)

The corresponding mass shift can be found from Eq. (9).
The self-energy operator (2) for kaons in isotopically
symmetric pion matter has the same form as for antikaons
due to C parity. The values �MK and VK are also iso-
scalars, and so �MK� � �MK0 � �MK� � �M �K0 and
VK� � VK0 � VK� � V �K0 , as distinct from the nuclear
matter case [1–3,5]. Moreover, in isotopically symmetric
pion matter ��p2; E� � ��p2;�E�. This is a consequence
of the crossing symmetry according to which
A��s; 0; p2� � �A��u; 0; p2�, where u � �p0 � p��

2.
Current algebra predicts [18] a�0 � b�0 � 3a�1 � 0.

The parameters a�0 , b�0 ; and a�1 entering into Eqs. (10)
and (11) receive in ChPT corrections to the order p4. The
calculations of Ref. [21] give a�0 � �0:023� 0:012�=M�

and b�0 � 3a�1 � �0:054� 0:008�=M3
�. The higher order

terms in the expansion of the self-energy operator over
the kaon momentum require the knowledge of the higher
order threshold parameters.

According to ChPT, the pseudoscalar meson masses
increase with temperature as expected for collective
modes. A similar effect exists in the Nambu–Jona-
Lasinio model [10]. With increasing temperature, the
constituent quark masses decrease, whereas the occupa-
tion numbers increase, pushing the K mass up and the �
052301-2
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FIG. 1 (color online). Self-energy Re��M2
K;MK�=�2MK� of

kaons at rest, mass shift ��MK, mean-field potential VK, and
kaon collision width �


K versus temperature T in isotopically
symmetric pion matter.
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mass down. A decrease of the �-meson mass was also
predicted in [22].

Equations (10) and (11) are valid at T & M�. The
chemical freeze-out temperature at RHIC T  170 MeV
[19] is high, and so we should use a more phenomeno-
logical approach. We rewrite the s-wave parts of the
amplitudes AI�s; t;M2

K� in terms of phase shifts �I0�p

� �

	aI0p

 � �bI0 �

2
3a

I3
0 �p


3� exp��CI�
4
2�, where �2 �

�2�
���
s

p
;M�;MK� � �p
=

���
s

p
is the invariant �K phase

space, C1=2 � 0:75 and C3=2 � 0:2. The behavior of the
p wave is assumed to be fixed by the aI1 scattering length
and the resonance K
. We thus make substitutions in the
amplitudes:

aI0 � bI0p

2 ! ei�

I
0�p


�sin�I0�p

�=p
; (12)

a1=21 ! a1=21

j�M� �MK�
2 �M2

K
 � iMK
�K
 j

s�M2
K
 � iMK
�K


: (13)

The value a3=21 is small and not modified. The amplitudes
(12) and (13) satisfy unitarity. The experimental �K
scattering phases are then well reproduced; the low-
temperature limit matches smoothly with one-loop
ChPT. The amplitudes AI are expressed in terms of the
amplitudes A� as follows: A1=2 � A� � 2A� and A3=2 �
A� � A� .

The kaon self-energy at threshold, the mass shift, and
the mean-field potential are shown as a function of tem-
perature in Fig. 1. At T � 170 MeV, we obtain �MK �
�33 MeV and VK � 21 MeV. Thus, the positive mass
shift at low temperatures where ChPT is applicable be-
comes negative with increasing temperature. The value of
Re��M2

K;MK�=�2MK� remains relatively small up to T �
200 MeV. The analogy with the Walecka model for nu-
cleons is remarkable: The kaon mass shift at high tem-
peratures is large and negative, the mean-field potential is
large and positive, and their sum is relatively small and
negative. The kaons are therefore bound in pion matter
similar to nucleons in nuclear matter. The mean-field
potential is, however, C even, as distinct from the case
of nucleons and kaons in nuclear matter [1,2,5].

The �-meson collision broadening has been discussed
in Refs. [22,23]. The � ! K �K decay might be suppressed
due to an increasing kaon mass and/or a decreasing
�-meson mass. Collisions of the � meson and the kaons
keep, however, the � ! K �K decay channel open even at
M� < 2MK and result in an increase of the total � width,
both at M� < 2MK and M� > 2MK.

The kaon collision width can be found from the equa-
tion

�

K �

1

6MK�2��
2

X
‘

Z
	jA1=2

‘ �s�j2 � 2jA3=2
‘ �s�j2� dns

��2�
���
s

p
;M�;MK�; (14)
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where AI
‘�s� are the on-shell partial wave projections of

the �K amplitudes with total isospin I � 1=2 and 3=2.
The K
 increases the width by 40 MeV. As a result, we
get �


K � 81 MeV at T � 170 MeV. The kaon collision
width as a function of temperature is shown in Fig. 1.

The �-meson in-medium width can be written as
�med
�!K �K � &�vac

�!K �K, where

& �
1

�2

Z p
3�M

�;m



1; m



2�

p
3�M�;MK;MK�

M

K�



Kdm


2
1

�m
2
1 �M
2

K �2 � �M

K�



K�

2

�
M


K�


Kdm


2
2

�m
2
2 �M
2

K �2 � �M

K�



K�

2 :

We set M

� � M� � 2VK and M


K � MK � �MK. Any
modification of the real part of the kaon self-energy
does not significantly alter the in-medium �-meson de-
cay rate as long as Re��M2

K;MK� � Im��M2
K;MK� �

MK�


K. The enhancement factor & as a function of tem-

perature is shown in Fig. 2. At T � 170 MeV, we get &
3 and �med

�  12 MeV. The in-medium �-meson width
increases, since the Breit-Wigner distribution allows an
effective reduction of the kaon masses and, as a conse-
quence, an effective increase of the available phase space.

Dileptons from � decays leave the pion matter essen-
tially undistorted by final-state interactions, whereas the
secondary kaons rescatter and can contribute to the ex-
perimental background. This can result in an increase of
the apparent dilepton branching: Let us assume that �
mesons leave the reaction at time ' after their creation
and that kaons originating from in-medium � mesons do
not rescatter. The � ! K �K decays generate nonrelativis-
tic K mesons, in the �-meson c.m. frame. Hence, second-
ary kaons move with the same velocity as � mesons
and leave the reaction zone without rescattering with
probability
052301-3
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FIG. 2 (color online). Enhancement factor & of the � ! K �K
decay versus temperature T in isotopically symmetric pion
matter.
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w
Z '

0
�e��


K�'�t��2e��

�t�� dt: (15)

The first term is the probability for two kaons to escape
from the reaction zone without rescattering. The second
term is the survival probability of the � meson at time t.
The last term ��dt is the probability to decay into the
kaon pair during dt. Notice that �


�dt has the meaning of
a decay probability into the kaons which rescatter with
pions. We select pairs with invariant masses of the �
meson which suffered no rescatterings. The number of
the � mesons observed in the two-kaon channel equals

NK �K  e��

�' �

��

2�

K � �


�

�e��

�' � e�2�


K'�: (16)

The first term arises due to the vacuum decays, whereas
the second term is given by Eq. (15). The number of the �
mesons observed in the dilepton channel equals

Ne�e�  e��

�'B� �1� e��


�'�B
; (17)

where B and B
 are the vacuum and in-medium dilepton
branchings of the � mesons. We assume that the dilepton
channel is not modified, B
=B � ��=�



�. The apparent

dilepton branching becomes

Bapp � B
1� �e�



�' � 1���=�


�

1�
��

2�

K��


�
�1� e��2�


K��

��'�

: (18)

According to transport calculations e�'��  1=2 at RHIC
energies [24]. In such a case, varying the temperature
T � 120� 170 between the commonly accepted values
for thermal and chemical freeze-out, we get Bapp=B
052301-4
2� 3 which is in qualitative agreement with the obser-
vations from the NA50, NA49, and PHENIX Col-
laborations who report an increased apparent dilepton
branching. Future data from RHIC and additional studies
incorporating refined fireball dynamics as well as in-
medium meson modifications might help to completely
solve the � puzzle and bring more insight in the meson
propagation in a dense and hot medium.
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