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We present a family of exactly solvable generalizations of the Jaynes-Cummings model involving the
interaction of an ensemble of SU(2) or SU(1, 1) quasispins with a single boson field. They are obtained
from the trigonometric Richardson-Gaudin models by replacing one of the SU(2) or SU(1, 1) degrees of
freedom by an ideal boson. The application to a system of bosonic atoms and molecules is reported.
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The Jaynes-Cummings (JC) model [1] provides a
simple description of the interaction of matter with a
radiation field. It treats a two-level atom in terms of the
spin-1/2 generators of the SU(2) algebra and describes its
coupling to a single radiation field in the so-called rotat-
ing wave approximation. Despite its simplicity, the model
has had enormous success in quantum optics, finding
realization in experiments with Rydberg atoms in micro-
wave cavities [2] and optical cavities [3].

There have also been several extensions of the JC
model that have likewise proven useful. One example is
the Tavis-Cummings model [4], in which the spin-1/2
operators are replaced by operators for arbitrary spin,
permitting the description of a collection of equivalent
two-level atoms in a radiation field. This model has been
solved exactly using the quantum inverse scattering
method [5]. Another example is the Buck-Sukumar
(BS) model [6], in which a specific nonlinear interaction
between the atoms and the radiation field is included and
which is also exactly solvable. The BS model is an ex-
ample of a general class of models in which the radiation
field is represented by an SU(1, 1) algebra and which are
also exactly solvable [7]. More general nonlinear terms
have also been discussed, but they can be treated only
approximately [8]. A third example is an exactly solvable
atom-molecule Hamiltonian that describes the photo-
association of pairs of condensed bosonic atoms—based
on the algebra SU(1, 1), rather than SU(2)—into mole-
cules with a linear interaction [9] or with a nonlinear
interaction [7].

Similar physics is also at play when a molecular Bose-
Einstein condensate (BEC) is produced through photo-
association (with or without the interaction with a
Feshbach resonance) in dilute fermion [10] or boson
[11] gases. The production of degenerate bosonic sodium
atom-molecule mixtures has been recently reported [12],
though it is still an open question as to whether the
molecules formed a BEC. Mixtures of fermion atoms
and molecular dimers are better candidates for construct-
ing a molecular BEC due to the suppression of molecular
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decay by Pauli blocking. Indeed, two groups have re-
ported the manufacture of molecular BECs from %K
[13] and °Li [14] fermionic atoms, respectively. Unfor-
tunately, no current exactly solvable model can describe
these physical processes.

In this Letter, we show how to generalize the JC model
to accommodate these physical scenarios, as well as
others, in the context of exactly solvable models. The
extension is to a family of models that involve an en-
semble of SU(2) or SU(1, 1) quasispins and a single bo-
sonic mode. For the purposes of our discussion, the SU(2)
models describe fermion pairs and their coupling to a
bosonic mode, whereas the SU(1, 1) models describe the
corresponding physics of bosonic pairs. The SU(2) mod-
els could also be used to describe two-level atoms and a
bosonic mode, but we do not discuss such models here.
The generalizations we describe build on the recently
proposed Richardson-Gaudin (RG) integrable models
[15] (for a recent review see [16]). Following the presen-
tation of the models, we discuss their specific application
to a mixture of bosonic atoms and molecular dimers.

We begin by introducing the generators of the SU(2)
and SU(1, 1) algebras, KV, K;*, and K; = (K;")T, which
satisfy the commutation relations

[KY, K 1= 6K/, (K K;]= F26,;K). (D
The upper sign refers to the bosonic SU(1, 1) algebra and
the lower sign to the fermionic SU(2) algebra, as they do
throughout this presentation.

In the quasispin or pair representation of the SU(2) and
SU(1, 1) algebras, the generators are realized in terms of
particle creation and annihilation operators as

1 Q; 1
0 — } t J + z t 1
K] 5 2 ajmajm =+ 4 , K] 5 2 ajmaj,h. (2)

Here a;fm (aj,,) creates (annihilates) a boson or a fermion
in the state |jm), | jm) is the state obtained by acting with
the time reversal operator on |jm), and () j 1s the total
degeneracy of single-particle level j.
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There are three families of fully integrable and exactly
solvable RG models that derive from the SU(2) and
SU(1, 1) algebras, the rational, trigonometric, and hyper-
bolic families, respectively [15]. For all three, it has been
shown how to write the complete set of commuting in-
tegrals of motion and the corresponding eigenvalues and
eigenvectors. Here we focus on the trigonometric family,
for which they can be expressed in terms of the generators
as

R =K'+2 7K+K + K; K+
o gj;){%m(m )[ :

For each degree of freedom i, there is one real arbitrary
parameter 7); that enters the integrals of motion.

We now consider the eigenvalue equation for the inte-
grals of motion, R;|¥) = r;|¥), in the seniority-zero
sector, namely, when all particles are paired. Solutions
with broken pairs can also be readily obtained, as in [15].

In this sector, the eigenstates of R; are given by

1

I ‘s
2 sinte, —mp 10 @

M
|wy =[] B0,  BL=
a=1

where |0) is a state that is annihilated by all the K, and M
is the number of pairs. The structure of the collective
operators B, is determined by a set of M parameters e,
which satisfy the set of coupled nonlinear equations

- §XQjcot(ea —n;) *2¢ Z cot(eg — e,) = 0.
i

B(#a)
&)
The associated eigenvalues take the form
Q
ri=i4{ 229 cot(n; — ;)
J(Fi)
+ ZgZ cot(e, — ni)}. (6)
a

The important point to note here is that any
Hamiltonian that can be written solely in terms of the
integrals of motion R; is likewise exactly solvable, with
precisely the same eigenvectors as in (4) and with eigen-
values that are obtained directly from those in (6).

We now discuss how to construct from the trigonomet-
ric RG models a new class of exactly solvable models that
involve the interplay of a set of SU(2) or SU(1, 1) systems
with a single bosonic mode. To do this, we use a trick
proposed by Gaudin [17], which involves replacing one
SU(2) or SU(1, 1) degree of freedom by an ideal boson.
For specificity, we denote the SU(2) or SU(1, 1) degree of
freedom to be bosonized as i = 0 and the remaining as
i=1,...,L. In the limit )y — oo, the generators map
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onto ideal bosons according to

Q
K = 7%*. 7

Q
K)=bth+ =0

4
We now introduce a change of notation for the trigo-
nometric functions that appear in (3) for the selected
degree of freedom, w; = 1/sin(ny — 1;), v; = cot(ny —
n;), with w? — v} = 1. Moreover, we expand these am-
plitudes in the inverse of the divergent degeneracy (),
242, =

Wl 1 + Q() N UZ

set of parameters g; (I = 1, ..., L) to replace the 7;’s.
Inserting (7) and this new parametrization into (3), we

obtain new integrals of motion that involve the ideal
boson degree of freedom,

_‘/Qlo g;, thereby introducing a new

Ry=bTb+ G[Z(bTKj + K7 b) + Zst;)} ®)
J J

1

— x0 + g -+

Rj—K-+G|:Z{(8'_ .)[K,. K; + K K]
i(#}) J

¥ K?Kﬁ?} (Kib+ K;b*) — g ]} )
&, — Sj

where G = g/Q/2.

The resulting R; still satisfy the conditions for an
integrable model. They remain Hermitian, global, and
independent, and mutually commute with one another,
thereby constituting a complete set of integrals of motion.
Thus, any Hamiltonian that can be written in terms of
them likewise defines an exactly solvable model.

It is important to note that the integrals of motion in
Egs. (8) and (9) define a totally new set of exactly solvable
models, even though they were derived from the trigono-
metric family of RG models. That they are not simply the
trigonometric family rewritten can be seen by focusing
on Eq. (9), which gives the form of the new R; integrals of
motion. They are, in fact, identical to those of the rational
family of exactly solvable models, except for the last two
terms, which are essential for ensuring commutation with
the new bosonic integral of motion R,.

Note further that the operator that counts the total
number of pairs, M = bth + 2Z]majmajm, also com-
mutes with all R; and thus defines a conserved quantity.

Before continuing our derivation of the exact solutions
associated with these integrals of motion, we first write
down a particularly interesting Hamiltonian that can be
treated exactly in this way. It is obtained directly from the
selected integral of motion Ry,

G
H = wR, IM—ZQ-SJ-

= wb'b + Zej @i T VZ(b‘fK + K/ b), (10)
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where V = wg 0y/2 and €; ?/81/2..In the pair repre (K% = (R;) — G< 1> — - ¢ (16)
sentation of SU(2) or SU(1, 1), this Hamiltonian describes oG oG
the interaction of fermionic or bosonic atom pairs with a . . .
. . . . from which we obtain for the occupation numbers
diatomic molecule. In the two-level representation, it
generalizes the Tavis-Cummings model to multiatoms. 1 0Xg
Many oth iltoni ; n=—0,G*» ———5 . (17)
y other exactly solvable Hamiltonians can be de (x, — &, 0G
o o 1

rived by taking linear combinations of the other integrals
of motion. This will lead, e.g., to Hamiltonians involving
atom-atom pairing interactions and level-dependent
atom-molecule couplings.

We now discuss how to rewrite the seniority-zero
solutions for the trigonometric RG models to apply
when one of its degrees of freedom has been replaced

by an ideal boson in the infinite—{), limit. Defining x, =

JVQ/2cot(e, — 1), the Richardson-Gaudin equations
(5) that define the parameters ¢, and thus the x,, become

1

1 1 1 Q; _
— ==X, —— — ¥ =0. (11
26 27 4§-sj—xa s B T Xa

The corresponding expressions for the eigenvalues (6)
associated with the new integrals of motion (8) and (9)

are

G
}"0 = iz;ﬂjﬁ‘] + G;xa; (12)
.o
I - 4 Q
1 1 i 1
X{IIZG[—sii— / +Z M
2 4.j(#i)8i_8j = Xo — &
(13)

while the seniority-zero eigenvectors take the form

1

= t
|%=[Kb+§h_&

a=1

K,+>|o>. (14)

We note here that each independent solution of the set of
nonlinear coupled Egs. (11) defines an eigenstate (14) that
is common to the L + 1 integrals of motion (8) and (9)
and has eigenvalues (12) and (13).

The eigenvalues of the Hamiltonian (10), for example,
can be obtained from the eigenvalues (12) of r( as

E= VZxa. (15)

It is worth noting here that the solutions given in (11)—
(14) are identical to those of the Tavis-Cummings model
[5] for a single SU(2) spin and to those for the atom-
molecule model of [9] for a single SU(1, 1) bosonic level.

Important observables in these models are the occupa-
tion probabilities of the various degrees of freedom. They
can be obtained from the integrals of motion using the
Hellman-Feynman theorem, viz.,
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The derivatives of the x, are obtained by differentiating
the RG Egs. (11) with respect to G, which gives

+ 1 + lz Qj +
2 45 (xy — g;)?
1 :|6xa 1 axg 1
— | — =% —.
e (xg — x4)% | 0G e (xg — x4)* 9G 2G?

(18)

We now describe a first application of these ideas, to
demonstrate the feasibility of getting exact solutions for
these models even for very large numbers of particles. We
consider a mixture of bosonic atoms confined to a 3D
isotropic trap coupled to a molecular two-particle bound
state, a molecular dimer, and model it through the
Hamiltonian (10). This Hamiltonian does not contain
an atom-atom interaction, which could be included by
using Hamiltonians derived from the other R;’s (9). In the
Hamiltonian we use, w is the energy of the molecular
dimer above that of the Feshbach resonance and is the
negative of the detuning parameter. Also, V is the atom-
molecule interaction strength, €; = j (j =0,1,...) are
the single-atom energies in a 3D isotropic trap, and
Q;=(j+ 1)(j +2)/2 are the level degeneracies. The
phase diagram and dynamics of this model have been
studied in several recent works, e.g., [18]. To make con-
tact with Ref. [18], our detuning parameter is related to
theirs by w = 6 and our atom-molecule coupling is
V =—K/2VM).

As noted before, the complete set of seniority-zero
eigenstates arises from different solutions of Eq. (11).
For bosonic atoms, the parameters x,, are always real.

We have performed calculations for a system with M =
500 pairs and two values of the molecular energy, w = 10
and w = —10, as a function of the negative coupling V.
The atom space was truncated to L = 50 harmonic oscil-
lator shells. In Fig. 1, we show the occupation probabili-
ties of the atomic condensate (solid line) and the atomic
depletion (dashed line), and the fraction of molecules
(dotted line) as a function of V for positive molecular
energy (w = 10). As can be seen, a quantum phase tran-
sition takes place at V =~ —0.45. Interestingly, the occu-
pation of the atom condensed state is negligible for
V < —0.45 and the atomic fraction is distributed among
all harmonic oscillator levels. A pure molecular state
does not exist for any value of V. This quantum phase
transition was recently studied using mean-field and re-
normalization group techniques, and it was concluded
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FIG. 1. Occupation probabilities as a function of the interac-
tion V for a molecule energy w = 10. The solid line corre-
sponds to condensed atoms, the dashed line to noncondensed
atoms, and the dotted line to condensed molecules.

that it lies in the Ising universality class [19]. The exact
solution offers a unique tool for exploring the critical
properties around the transition point.

In Fig. 2 we show results for negative molecular energy,
o = —10. The system is purely molecular for weak
coupling. Molecules begin to decay to pair atomic states,
as the interaction strengthens, but there is no phase tran-
sition and the occupation of the lowest trap level is always
negligible. A detailed study of the phase diagram that
emerges from the exact solutions will be given elsewhere.

In closing, we have presented in this Letter a new
family of integrable models for atom-molecule systems.
The models are exactly solvable for fermionic and bo-
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FIG. 2. Occupation probabilities as a function of the inter-
action V for a molecule energy w = —10. The solid line

corresponds to condensed atoms, the dashed line to noncon-
densed atoms, and the dotted line to condensed molecules.
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sonic atoms interacting with molecular dimers. There
is a large freedom to select the parameters of the
Hamiltonian, allowing for the description of quite gen-
eral realistic systems. We presented initial results for a
mixed system of trapped bosonic atoms and molecular
dimers. Application to systems of fermionic atoms and
molecular dimers is of special interest due to the recent
generation of ultracold molecular BECs from the conver-
sion of 49K [13] and °Li [14] fermionic atoms. Such
models can also be used to explore the BCS to BEC
crossover, from a condensate dominated by Cooper pairs
to one dominated by molecular dimers. Finally, it is
possible to use alternative realizations of these models
to describe problems of importance in quantum optics
and perhaps elsewhere.
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Note added.—After submitting this work, we learned
of a recent paper on generalized integrable matter-
radiation models [20]. The extended Jaynes-Cummings
Hamiltonians treated therein have non-Hermitian atomic
interactions.
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