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Interacting Fermions in Highly Elongated Harmonic Traps
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Quasi-one-dimensional two-component Fermi gases with effectively attractive and repulsive inter-
actions are characterized for arbitrary interaction strength. The ground-state properties of the gas
confined in highly elongated harmonic traps are determined within the local density approximation.
For strong attractive effective interactions the existence of a molecular Tonks-Girardeau gas is
predicted. The frequency of the lowest breathing mode is calculated as a function of the coupling
strength for both attractive and repulsive interactions.
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The study of quasi-one-dimensional (Q1D) atomic
quantum gases presents a very active area of research.
So far, most of the experimental [1,2] and theoretical [3–
7] investigations have been devoted to Q1D Bose gases
and, in particular, to the strongly interacting Tonks-
Girardeau gas, which can be mapped to a gas of non-
interacting fermions [3,8,9]. Q1D two-component atomic
Fermi gases have not been realized experimentally yet;
however, their realization in highly elongated, needle-
shaped traps is within reach of present-day techniques.
The behavior of Q1D two-component Fermi gases can, if
the confinement is chosen properly, be characterized to a
very good approximation by an effective 1D coupling
constant, g1D, which encapsulates the interspecies atom-
atom interaction strength. This coupling constant can be
tuned to essentially any value, including zero and �1, by
varying the 3D s-wave scattering length a3D through
application of an external magnetic field in the proximity
of a Feshbach resonance.

The role of interactions in Q1D atomic Fermi gases has
been studied mainly in connection with Luttinger liquid
theory [10,11]. Recati et al. [11] investigate the properties
of a two-component Fermi gas with repulsive interspecies
interactions confined in highly elongated harmonic traps.
In the limit of weak and strong coupling these authors
relate the parameters of the Luttinger Hamiltonian,
which describe the low-energy properties of the gas, to
the microscopic parameters of the system. The prospect of
realizing Luttinger liquids with cold fermionic atoms is
fascinating since it allows detailed investigations of
strongly correlated many-body systems, which play a
central role in condensed matter physics [12], to be
conducted.

In homogeneous 1D Fermi gases with attractive inter-
actions, sound waves propagate with a well defined veloc-
ity, while spin waves exhibit a gap [13]. Furthermore, in
the strong-coupling regime, the ground state is composed
of bosonic molecules (consisting of two fermions with
different spin), whose spatial size is much smaller than
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the average intermolecular distance [13]. Consequently,
BCS-type equations have been discussed for effectively
attractive 1D interactions [14]. The Q1D molecular Bose
gas discussed here (see also Ref. [15]) has similarities
with the formation of a molecular Bose-Einstein conden-
sate (BEC) from a 3D Fermi sea close to a magnetic
atom-atom Feshbach resonance [16].

This Letter investigates the properties of inhomoge-
neous Q1D two-component Fermi gases under harmonic
confinement with attractive and repulsive interspecies
interactions. Our study is based on the exact equation of
state of a homogeneous 1D system of fermions with zero-
range attractive [13,17] and repulsive [18] interactions
treated within the local density approximation (LDA).
We calculate the energy per particle, the size of the cloud,
and the frequency of the lowest compressional mode as a
function of the effective 1D coupling constant, including
infinitely strong attractive and repulsive interactions. Our
predictions for the size of the cloud and for the breathing
mode frequency have immediate implications for experi-
mental studies. It has been shown recently for Q1D Bose
gases [2] that precise measurements of collective mode
frequencies can provide evidence for beyond mean-field
effects. For attractive interactions we discuss the cross-
over from the weak- to the strong-coupling regime and
point out the possibility of forming a mechanically stable
molecular Tonks-Girardeau gas.

Consider a two-component atomic Fermi gas confined
in a highly elongated trap. The fermionic atoms are
assumed to belong to the same atomic species, that is,
to have the same mass m, but to be trapped in different
hyperfine states �, where � represents a generalized spin
or angular momentum, � �" or # . The trapping potential
is assumed to be harmonic and axially symmetric,
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FIG. 1. Effective 1D coupling constant g1D [solid line,
Eq. (4)], together with effective 1D scattering length a1D
[dashed line, Eq. (5)] as a function of a3D.
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radial and longitudinal coordinates of the ith atom; !


and !z denote, respectively, the angular frequencies in
the radial and longitudinal directions; and N denotes
the total number of atoms. We require the anisotropy
parameter �, � � !z=!
, to be so small that the trans-
verse motion is ‘‘frozen’’ to zero point oscillations. At
zero temperature this implies that the Fermi energy asso-
ciated with the longitudinal motion of the atoms in the
absence of interactions, �F � N 	h!z=2, is much smaller
than the separation between the levels in the transverse
direction, �F 	 	h!
. This condition is fulfilled if �	

1=N. The outlined scenario can be realized experimen-
tally with present-day technology using optical traps.

If the Fermi gas is kinematically in 1D, it can be
described by an effective 1D Hamiltonian with contact
interactions,

H � N 	h!
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and N � N" � N#. This effective Hamiltonian accounts
for the interspecies atom-atom interactions, which are
parametrized by the 3D s-wave scattering length a3D,
through the effective 1D coupling constant g1D [3],

g1D �
2 	h2a3D
ma2


1

1
 Aa3D=a

; (4)

but neglects the typically much weaker p-wave interac-

tions. In Eq. (4), a
 �
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is the characteristic

oscillator length in the transverse direction and A �
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’ 1:0326. Alternatively, g1D can be ex-

pressed through the effective 1D scattering length a1D,
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Figure 1 shows g1D and a1D as a function of the 3D s-wave
scattering length a3D, which can be varied continuously
by the application of an external field. The effective 1D
interaction is repulsive, g1D > 0, for 0< a3D < ac3D
(ac3D � 0:9684a
), and attractive, g1D < 0, for a3D >
ac3D and for a3D < 0. By varying a3D, it is possible to go
adiabatically from the weakly interacting regime (g1D �
0) to the strongly interacting repulsive regime (g1D !
�1 or a3D & ac3D), as well as from the weakly interacting
regime to the strongly interacting attractive regime
(g1D ! 
1 or a3D * ac3D) [19].

For two fermions with different spins the Hamiltonian
H0

1D, Eq. (3), supports one bound state with binding en-
ergy �bound � 
 	h2=�ma21D� and spatial extent �a1D for
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g1D < 0, and no bound state for g1D > 0; that is, the
molecular state becomes exceedingly weakly bound and
spatially delocalized as g1D ! 0
 [3]. In the following
we investigate the properties of a gas with N fermions,
N" � N#, for both effectively attractive and repulsive 1D
interactions with and without longitudinal confinement.

Consider the Hamiltonian H0
1D, Eq. (3), which de-

scribes a homogeneous 1D two-component Fermi gas.
The ground state energy Ehom of H0

1D has been calculated
exactly using Bethe’s ansatz for attractive [17] and repul-
sive [18] interactions, and can be expressed in terms of the
linear number density n1D � N=L, where L is the size of
the system,

Ehom

N
�

	h2n21D
2m

e�$�: (6)

The dimensionless parameter $ is proportional to the
coupling constant g1D, $ � mg1D=� 	h

2n1D�, while its ab-
solute value is inversely proportional to the 1D gas pa-
rameter n1Dja1Dj, j$j � 2=n1Dja1Dj. The function e�$� is
obtained by solving a set of integral equations [20], which
is similar to that derived by Lieb and Liniger [21] for 1D
bosons with repulsive contact interactions. To obtain the
energy per particle, Eq. (6), we solve these integral
equations for $ < 0 [17] and for $ > 0 [18].

Figure 2 shows the energy per particle, Ehom=N (solid
line), the chemical potential %hom, %hom � dEhom=dN
(dashed line), and the velocity of sound c (inset), which
is obtained from the inverse compressibility mc2 �
n1D@%hom=@n1D, as a function of the interaction strength
$. In the weak coupling limit, j$j 	 1, %hom is given by

%hom �
'2

4

	h2n21D
2m

� $
	h2n21D
2m

� � � � ; (7)

where the first term on the right hand side is the energy of
an ideal two-component atomic Fermi gas, and the sec-
ond term is the mean-field energy, which accounts for
interactions. The chemical potential increases with in-
creasing $, and reaches an asymptotic value for $! 1
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FIG. 3. Energy per particle, E=N 
 	h!
 (solid lines), and
size of the cloud, R (dashed lines), for an inhomogeneous two
component 1D Fermi gas as a function of Na21D=a

2
z for repulsive

(g1D > 0) and attractive (g1D < 0) interactions.

FIG. 2. Ehom=N (solid line), %hom (dashed line), and c (inset)
for a homogeneous two-component 1D Fermi gas as a function
of $ (horizontal arrows indicate the asymptotic values of
Ehom=N, %hom, and c, respectively).
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(indicated by a horizontal arrow in Fig. 2),

%hom � '2 	h2n21D
2m



16'2 ln�2�

3$
	h2n21D
2m

� � � � : (8)

The first term on the right hand side coincides with the
chemical potential of a one-component ideal 1D Fermi
gas with N atoms, the second term has been calculated in
[11]. Interestingly, for $� 1, the strong atom-atom re-
pulsion between atoms with different spin plays the role
of an effective Pauli principle [11].

For attractive interactions and large enough j$j the
energy per particle is negative (see Fig. 2), reflecting
the existence of a molecular Bose gas, which consists of
N=2 diatomic molecules with binding energy �bound. Each
molecule is composed of two atoms with different spin. In
the limit $! 
1, the chemical potential becomes

%hom � 

	h2

2ma21D
�
'2

16

	h2n21D
2m



'2

12$
	h2n21D
2m

� � � � :

(9)

The first term is simply �bound=2, one-half of the bind-
ing energy of the 1D molecule, while the second term is
equal to half of the chemical potential of a bosonic
Tonks-Girardeau gas with density n1D=2, consisting of
N=2 molecules with mass 2m [22]. Importantly, the
compressibility remains positive for $! 
1 [a horizon-
tal arrow in the inset of Fig. 2 indicates the asymptotic
value of c, c � ' 	hn1D=�4m�], which implies that two-
component 1D Fermi gases are mechanically stable even
in the strongly attractive regime. In contrast, the ground
state of 1D Bose gases with g1D < 0 has negative com-
pressibility [23] and is hence mechanically unstable.

Using the solutions for the homogeneous two-
component 1D Fermi gas, we now describe the inhomo-
geneous gas, Eq. (2), within the LDA [5,6,11]. This ap-
proximation is applicable if the size R of the cloud is
much larger than the harmonic oscillator length az in the
longitudinal direction, az �

���������������
	h=m!z

p
, implying �F �
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	h!z and N � 1. The chemical potential % of the inho-
mogeneous system can be determined from the local
equilibrium condition,

% � %hom�n1D�z�� �
1
2m!

2
zz

2; (10)

and the normalization condition N �
R
R

R n1D�z�dz,

where z is measured from the center of the trap, R �������������������������
2%0=�m!2

z�
q

, and %0 � % for g1D > 0 and %0 �

%� j�boundj=2 for g1D < 0. The normalization condition
can be reexpressed in terms of the dimensionless chemi-
cal potential ~% and the dimensionless density ~n1D [ ~% �
%0=� 	h2=2ma21D� and ~n1D � ja1Djn1D],

N
a21D
a2z

�
Z ~%

0

~n1D� ~%
 x����
x

p dx: (11)

This expression emphasizes that the coupling strength is
determined by Na21D=a

2
z ; Na21D=a

2
z � 1 corresponds to

the weak coupling and Na21D=a
2
z 	 1 to the strong cou-

pling regime, irrespective of whether the interactions are
attractive or repulsive [6].

Figure 3 shows the energy per particle and the size of
the cloud as a function of the coupling strength Na21D=a

2
z

for positive and negative g1D calculated within the LDA
for an inhomogeneous two-component 1D Fermi gas.
Compared to the noninteracting gas, for which R �����
N

p
az, R increases for repulsive interactions and de-

creases for attractive interactions. For Na21D=a
2
z 	 1, R

reaches the asymptotic value
�������
2N

p
az for the strongly

repulsive regime, g1D ! �1, and the value
���������
N=2

p
az for

the strongly attractive regime, g1D ! 
1. The shrinking
of the cloud for attractive interactions reflects the forma-
tion of tightly bound molecules. In the limit g1D ! 
1,
the energy per particle approaches �bound=2� N 	h!z=8�
	h!
, indicating the formation of a molecular bosonic
Tonks-Girardeau gas, consisting of N=2 molecules.
050402-3



FIG. 4. Square of the lowest breathing mode frequency, !2,
as a function of the coupling strength Na21D=a

2
z for an inho-

mogeneous two-component 1D Fermi gas with repulsive
(g1D > 0) and attractive (g1D < 0) interactions determined nu-
merically from Eq. (12) (solid lines). Dashed lines show
analytic expansions (see text).
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Using a sum rule approach, the frequency ! of the
lowest compressional (breathing) mode of harmonically
trapped 1D gases can be calculated from the mean-square
size of the cloud hz2i [6],

!2 � 
2
hz2i

dhz2i=d!2
z
: (12)

In the weak and the strong coupling regimes (Na21D=a
2
z �

1 and 	 1, respectively), hz2i has the same dependence
on !z as the ideal 1D Fermi gas. Consequently, ! is in
these limits given by 2!z. Solid lines in Fig. 3 show !2,
determined numerically from Eq. (12), as a function of
the interaction strength Na21D=a

2
z . To gain further insight,

we calculate the first correction �! to the breathing mode
frequency ! [! � 2!z�1� �!=!z � � � ��] analytically
for weak repulsive and attractive interactions, as well as
for strong repulsive and attractive interactions. For the
weak coupling regime, we find �!=!z � ��4=3'2�=
�Na21D=a

2
z�

1=2, where the minus sign applies to repulsive
interactions and the plus sign to attractive interactions.
For the strong coupling regime, we find �!=!z �


�16
���
2

p
ln�2�=15'2��Na21D=a

2
z�

1=2 for repulsive interac-
tions and �!=!z � �8

���
2

p
=15'2��Na21D=a

2
z�

1=2 for attrac-
tive interactions. Dashed lines in Fig. 4 show the resulting
analytic expansions for !2, which describe the lowest
breathing mode frequency quite well over a fairly large
range of interaction strengths but break down for
Na21D=a

2
z � 1.

In conclusion, we have investigated the crossover from
weak to strong coupling of Q1D harmonically trapped
two-component Fermi gases with both repulsive and at-
tractive effective interactions. The frequency of the lowest
breathing mode, which can provide an experimental sig-
050402-4
nature of the crossover, is calculated. We predict the
existence of a stable molecular Tonks-Girardeau gas in
the strongly attractive regime.
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