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We study how the notions of importance of variables in Boolean functions as well as the sensitivities
of the functions to changes in these variables impact the dynamical behavior of Boolean networks. The
activity of a variable captures its influence on the output of the function and is a measure of that
variable’s importance. The average sensitivity of a Boolean function captures the smoothness of the
function and is related to its internal homogeneity. In a random Boolean network, we show that the
expected average sensitivity determines the well-known critical transition curve. We also discuss
canalizing functions and the fact that the canalizing variables enjoy higher importance, as measured
by their activities, than the noncanalizing variables. Finally, we demonstrate the important role of the
average sensitivity in determining the dynamical behavior of a Boolean network.
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Introduction.—Boolean networks are complex systems
that were initially proposed as models of genetic regula-
tory networks [1,2] but have since been used to model a
range of complex phenomena [3]. It is well known that the
bias (internal homogeneity) as well as the number of input
variables (network connectivity) can modulate the order-
disorder transition, with higher homogeneity and lower
connectivity leading to more ordered behavior. In addi-
tion, networks constructed from functions belonging to
various classes, such as canalizing functions [2] and
certain Post classes [4], can also exhibit a tendency
toward ordered behavior.

In the original formulation [1], the connectivity is set
to a constant K. However, it is also possible to let it be
random, chosen under various distributions [5,6], with
mean connectivity K. Another important parameter is
the bias p of the random functions fi, which is the proba-
bility that the function takes on the value 1. A random
Boolean function with bias p can be generated by flipping
a p-biased coin 2K times and thus filling in the truth table.
If p � 0:5, then the function is said to be unbiased. By
varying the parameters K and p, the network can be made
to undergo a dynamical phase transition. For example, in
the case of unbiased functions, the critical connectivity is
K � 2, meaning that for K > 2, we observe chaotic be-
havior. In general, for a given bias p, the critical con-
nectivity is equal to Kc � �2p�1� p���1 (Ref. [7]). Thus,
if K < Kc, perturbations die out and if K >Kc, the dam-
age caused by a perturbation spreads throughout the net-
work over time. Strongly biased functions (when p is far
away from 0.5) are said to have a high degree of internal
homogeneity [2] and are associated with increased order
in Boolean networks.

The bias of a Boolean function is, in a sense, a global
parameter that can affect only the Hamming weight
(number of 1s in the truth table) of the function but is
unable to capture any of its local structure. For example, a
0031-9007=04=93(4)=048701(4)$22.50 
Boolean function with the truth table (0101010101010101)
may have just as many 1s and 0s as a random unbiased
function, but it has a very specific structure that plays a
role in increasing order in a Boolean network. Of course,
this example is rather extreme, since the above function is
a function of only one variable (K � 1), with the other
variables being fictitious. Thus, out of four variables, this
one variable has all the importance whereas the other
three variables have no importance, as their values have
no way of altering the output of the function. There is
reason to suppose that if we were to allow gradations of
this notion of importance, then functions in which few
variables have high importance and most other variables
have low importance would play a similar role in eliciting
order from Boolean networks. In a sense, a network com-
prised of such types of functions, despite possibly having
a large actual connectivity, would exhibit a low virtual
connectivity, as most input variables in any given func-
tion would have very little say in what happens to the
function output.

The same phenomenon manifests itself in the class of
so-called canalizing functions, which are known to play a
role in preventing chaotic behavior [1,2,8,9]. A canalizing
function is one in which at least one of the input variables
(called canalizing variables) has one value that is able to
determine the value of the output of the function, regard-
less of the other variables. There is also evidence that
many control rules governing transcription of eukaryotic
genes are canalizing when viewed in the Boolean formal-
ism [10]. Although we have not yet defined a formal
notion of the importance of variables, one would expect
that the canalizing variables exhibit higher importance
than the noncanalizing variables.

The tools that we will use to study the relative impor-
tance of variables and the effects on the behavior of Bool-
ean networks are based on partial derivatives of Boolean
functions, activities of variables, and sensitivities of
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Boolean functions. We should mention in passing that
much of the discussion in this Letter can be formulated
in terms of spectral methods or harmonic analysis on the
n cube.

Activities and sensitivities.—In a Boolean function,
some variables have a greater influence over the output
of the function than other variables. To formalize this
concept, let f: f0; 1gK ! f0; 1g be a Boolean function of K
variables x1; . . . ; xK. Let

@f�x�=@xj � f�x�j;0�� 
 f�x�j;1��

be the partial derivative of f with respect to xj, where 
 is
addition modulo 2 (exclusive OR) and x�j;k� � �x1; . . . ;xj�1;
k;xj�1; . . . ;xK�, k � 0, 1. Clearly, the partial derivative is a
Boolean function itself that specifies whether a change in
the jth input causes a change in the original function f. It
should be noted that the Boolean derivative was recently
used to develop a new order parameter for the random
Boolean network phase transition [11].

Now, the activity of variable xj in function f can be
defined as

�f
j �

1

2K
X

x2f0;1gK
@f�x�=@xj:

Note that although the vector x consists of K components
(variables), the jth variable is fictitious in @f�x�=@xj. A
variable xj is fictitious in f if f�x�j;0�� � f�x�j;1�� for all
x�j;0� and x�j;1�. For a K-variable Boolean function f, we
can form its activity vector �f � ��f

1 ; . . . ; �
f
K�. It is easy

to see that 0 
 �f
j 
 1, for any j � 1; . . . ; K. In fact, we

can consider �f
j to be a probability that toggling the jth

input bit changes the function value, when the input
vectors x are distributed uniformly over f0; 1gK. Since
we are in the binary setting, the activity is also the
expectation of the partial derivative with respect to the
uniform distribution: �f

j � E�@f�x�=@xj�. Under an arbi-
trary distribution, �f

j is referred to as the influence of
variable xj on the function f [12]. The influence of var-
iables was used in the context of genetic regulatory net-
work modeling in [13].

Another important quantity is the sensitivity of a
Boolean function f, which measures how sensitive the
output of the function is to changes in the inputs (this was
introduced in [14] under the name of critical complexity).
The sensitivity sf�x� of f on vector x is defined as the
number of Hamming neighbors of x on which the func-
tion value is different than on x (two vectors are
Hamming neighbors if they differ in only one compo-
nent). That is,

sf�x� � jfi 2 �1; . . . ; K� : f�x 
 ei� � f�x�gj

�
XK

i�1

��f�x 
 ei� � f�x��;

where ei is the unit vector with 1 in the ith position and 0s
everywhere else, and ��A� is an indicator function that is
equal to one if and only if A is true. The average sensi-
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tivity sf is defined by taking the expectation of sf�x� with
respect to the distribution of x. It is easy to see that under
the uniform distribution, the average sensitivity is equal
to the sum of the activities:

sf � E�sf�x�� �
XK

i�1

E���f�x 
 ei� � f�x��� �
XK

i�1

�f
i :

Therefore, sf is a number between 0 and K.
Intuitively speaking, it seems that the average sensi-

tivity of a function should be related to its internal homo-
geneity. If a function is highly homogeneous, meaning
that it has either many 1s or many 0s, then it would be
unlikely to change much between neighboring vectors on
the K-dimensional hypercube and hence, its average sen-
sitivity should be low. On the other hand, a function that is
not homogeneous, with roughly equal numbers of 1s and
0s, should exhibit high average sensitivity. These ideas are
correct in the probabilistic sense.

Consider a random Boolean function with bias p. The
truth table of such a function is a 2K-length vector of
independent and identically distributed Bernoulli (p)
random variables. Therefore, the probability that two
Hamming neighbors are different is equal to 2p (1�
p), since one can be 1 (with probability p) and the other
0 (with probability 1� p), and vice versa. Since this is the
same for all Hamming neighbors, all expected activities
should be equal. That is, for each i � 1; . . . ; K, E��f

i � �
2p�1� p�, where the expectation is taken with respect to
the distribution of the truth table of the function f. Thus,
the expectation of the average sensitivity is E�sf� �PK

i�1 E��
f
i � �

PK
i�1 2p�1� p� � K2p�1� p�. We can

conclude that highly biased functions (p far away from
0.5) are expected to have low average sensitivity.
Similarly, an unbiased function (p � 0:5) has expected
average sensitivity equal to K=2. It is interesting to note
that in the context of random Boolean networks with
connectivity K, the expected average sensitivity deter-
mines the well-known critical transition curve with the
Lyapunov exponent [11] being the logarithm of the ex-
pected average sensitivity: � � logE�sf�.

Consider Fig. 1.We have generated all functions of K �
4 variables and generated a 2-dimensional normalized
histogram that shows the probability that, given a nor-
malized Hamming weight (ranging from 0 to 1), a ran-
domly selected function has a particular average
sensitivity (ranging from 0 to 4). The thick black line
shows the mean average sensitivity for each Hamming
weight. It is evident that the black line follows exactly the
quadratic expression given by K2p�1� p�.

Activities of variables in canalizing functions.—
A function f is said to be canalizing if there exists an
i 2 f1; . . . ; Kg and u, v 2 f0; 1g such that for all
x1; . . . ; xK 2 f0; 1g, if xi � u then f�x1; . . . ; xK� � v.
The input variable xi is called the canalizing variable
with canalizing value u and canalized value v. It is easy
to show that a canalizing function f can be written either
as f�x1; . . . ; xK� � xqi _ g�x1; . . . ; xi�1; xi�1; . . . ; xK� or
048701-2
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FIG. 1 (color online). A 2-dimensional normalized histo-
gram constructed by generating all Boolean functions of K �
4 variables and computing the number of functions with a given
normalized Hamming weight (which is the Hamming weight
divided by 16) and with a given average sensitivity. For each
fixed Hamming weight, the histogram of average sensitivities
is normalized such that the sum is equal to 1, so that we can
interpret each bar as a probability.
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f�x1; . . . ; xK� � xqi ^ g�x1; . . . ; xi�1; xi�1; . . . ; xK�, where
q 2 f0; 1g and _ and ^ denote disjunction (OR) and con-
junction (AND). Here, x1i � xi and x0i � x0i, where x0i is the
complement or negation of xi. As we already mentioned,
it should be expected that in canalizing functions, the
importance of canalizing variables is higher than that of
noncanalizing variables. This can indeed be shown by
using activities.

To illustrate this point for the particular case of
only one canalizing variable, we can consider a random
canalizing function of the form f�x1; . . . ; xK� �
x1 _ g�x2; . . . ; xK�, where g is chosen randomly from the
set of all 22

K�1
Boolean functions.Without loss of general-

ity, we can suppose that the first variable, x1, is a canal-
izing variable. Furthermore, the discussion for other
types of canalizing functions [e.g., f�x1; . . . ; xK� � x1 ^
g�x2; . . . ; xK�] would be nearly identical. In order to char-
acterize the activities of each of the variables, it suffices
to examine only the activity of x1 and x2, since it is clear
that the activities of variables x2; . . . ; xK will be identical
in the probabilistic sense if g�x2; . . . ; xK� is a random
unbiased function. Note that activities are themselves
random variables by virtue of f being random. It is fairly
straightforward to show [15] that the expected activity of
the canalizing variable x1 is equal to 1=2 whereas the
expected activity of x2 and each of the other variables is
1=4. The expected activity vector is then equal to
E��f� � �12 ;

1
4 ; . . . ;

1
4� and the expected average sensitivity

is equal to E�s�f�� � 1
2 �

1
4 �K � 1� � �K � 1�=4. The

situation for two or more canalizing variables is analo-
gous. The fact that networks comprised of canalizing
functions exhibit more orderly behavior relative to ran-
dom networks with the same connectivity is consistent
with our intuition about lower virtual connectivity of
canalizing networks in light of the above results. As
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random unbiased networks are expected to have average
sensitivity of K=2, these results also highlight the impor-
tance of the average sensitivity as an order parameter for
Boolean networks.

Dynamics of Boolean networks.—Our goal here is to
show that the activities of the variables of Boolean func-
tions, and consequently their average sensitivities, can
reflect the dynamical behavior of the Boolean networks
constructed from these functions. We expected that if in
any given function one activity is considerably higher
than all the other activities, the network should have a
tendency toward ordered behavior. This should also be the
case when all functions are canalizing since, as discussed
in the previous section, activities of canalizing variables
are expected to be larger than those of noncanalizing
variables.

In order to study the dynamics of networks, we will use
so-called Derrida curves [2,7]. These are constructed as
follows. Let x�1��t� and x�2��t� be two randomly chosen
states at some time t. The normalized Hamming distance
between them is ��t� � 1

N

PN
i�1 �x

�1�
i �t� 
 x�2�i �t��. Given a

random Boolean network realization, let x�1��t� 1� and
x�2��t� 1� be the successor states of x�1��t� and x�2��t�,
respectively. Similarly, let ��t� 1� be the Hamming
distance between these successor states. The Derrida
curve consists of plotting ��t� 1� versus ��t� and aver-
aging over many pairs of states and random networks.
If the network is operating in the chaotic regime, then
small Hamming distances tend to diverge and the Derrida
curve lies above the main diagonal for small initial
Hamming distances. This also implies that small gene
perturbations (i.e., nearby states) tend to spread farther
apart and networks are sensitive to initial conditions—a
hallmark of chaotic behavior. On the other hand, networks
in the ordered regime exhibit convergence for nearby
states, with the Derrida curve lying below the main
diagonal. The more the Derrida curve lies above the
main diagonal for small values of ��t�, the more chaotic
is the network.

We performed the following computer experiment.
First, we generated a random Boolean network B1 with
N � 100 elements and K � 8 inputs per function such
that for each random function, seven of its variables had
activity approximately 0.18 and one variable (chosen
randomly) had activity 0.8. Consequently, the sample
mean of the average sensitivities was approximately equal
to 2. The average bias of this network was approximately
equal to 0.41, which was computed by averaging over all
normalized Hamming weights for the 100 functions.
Briefly, each function in B1 is generated as follows. We
start off with f being a randomly generated function with
bias p1 [i.e., Bernoulli (p1)]. Then, if xj is the variable
chosen to have the high activity, then for each x�j;0�,
f�x�j;1�� � f�x�j;0�� with probability p2 and f�x�j;1�� �

f�x�j;0�� with probability 1� p2. Parameters p1 and p2

can be used to control the relative differences between the
high activity and the rest of the activities.
048701-3
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FIG. 2 (color online). Derrida curves corresponding to two
different random Boolean networks, both with N � 100 ele-
ments and K � 8 inputs in each Boolean function. The solid
curve corresponds to the case where one activity is much higher
than all other activities, in each Boolean function. The dashed
curve corresponds to the case where all activities are equal. The
internal homogeneity for both networks is the same.
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As a next step, we generated another random Boolean
network B2 with exactly the same bias. The size of the
network and connectivity were also kept the same. This
was done in order to control for possible confounding
effects due to bias. This random network, however, was
generated purely randomly such that all expected activi-
ties were equal. Since the bias was approximately p �
0:41, the expected activities were all equal to 2p�1�p��
0:4838 and the average sensitivity was equal to 3.87.

Figure 2 shows the Derrida plots corresponding to the
two networks, B1 and B2, shown as solid and dashed
plots, respectively. It is apparent that the network B1

exhibits more ordered behavior than B2. It is important
to note that the internal homogeneity, which in our case is
equal for both networks, fails to explain the relatively
higher order observed in B1. It is also worth mentioning
that none of the functions in B1 turned out to be canal-
izing. The average sensitivity, as stated above, was mark-
edly different however: 2 for B1 and 3.87 for B2. Thus,
the average sensitivity, in this case, is a much better
indicator of the dynamical behavior than the bias.

Let us briefly consider another example. Consider a net-
work with K � 18 in which every gene is governed by the
function f�x1; . . . ; x18� � �x1 ^ x2� _ �x3 ^ x4� _ � � � _
�x17 ^ x18�. It is easy to show that each of the 18 activities
is approximately equal to 0.0501 and the average sensi-
tivity is approximately 0:0501� 18 � 0:9010 (<1), im-
plying the network is ordered. The normalized Hamming
weight of f is 0.9249. If we construct a random Boolean
network with K � 18 and bias p � 0:9249, then
K2p�1� p� � 2:5001 (>1) and the network is chaotic.
Thus, we can have two networks with identical connec-
tivity and internal homogeneity that lie on opposite sides
of the order-chaos boundary, with the average sensitivity
reflecting this difference.
048701-4
Concluding remarks.—Our results suggest that the
average sensitivity is a useful order parameter in Bool-
ean network models. In the purely random setting, the
average sensitivity coincides with the well-known critical
transition curve, K2p�1� p�. However, when network
functions are generated according to probability distribu-
tions that favor some variables relative to others, as mea-
sured by the activities of the variables, or when functions
are chosen randomly from certain classes of functions
(e.g., canalizing), we can use the average sensitivity to
capture the dynamical behavior of the network. Thus, we
have an analytical method that allows us to determine
whether a specific network is ordered or chaotic without
having to run computer simulations that construct em-
pirical Derrida curves. For example, given a concrete
network, we can compute the average sensitivity of each
function and average these to obtain a single number that
reflects the regime in which the network operates.
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