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Effect of Quantum Collapse on the Distribution of Work in Driven Single Molecules
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Two sources of quantum deviations from Jarzynski’s celebrated classical relation between the free
energy change and the distribution of work are analyzed using an exactly solvable harmonic model:
Quantum dynamics retains the Gaussian profile of the distribution and merely gives rise to analytic
corrections in �h, whereas quantum measurements (wave function collapse) induce extended power-law
tails which fundamentally alter the distribution. These results may be observed in quantum information
processing and in experiments involving mechanically or optically driven single quantum objects.
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Jarzynski has pointed out that the distribution of work
made by a time-dependent force on classical systems may
be used to obtain the free energy difference between two
states, even when the force is switched on rapidly so that
the system is out of equilibrium throughout the process
[1,2]. Such distributions are readily obtained from re-
peated measurements on small systems (since bulk mea-
surements merely give the average work). This remarkable
relation between a path function (work) and a state func-
tion (free energy) has been verified experimentally [3] and
triggered intense theoretical activity [4–7].

Jarzynski’s original derivation and most subsequent
work relied on the detailed-balance condition of a
Markovian master equation for a classical system coupled
to a bath. However, quantum effects which arise from
both the quantum nature of the dynamics itself as well as
the effects of repeated measurements [8] may be signifi-
cant for single quantum objects (trapped ions, atoms, and
molecules). The Jarzynski’s relation was shown to hold
for an isolated quantum system, when the measurement of
work was treated classically [9], but its extension to more
general quantum systems is still an open problem.

In this Letter we use an exactly solvable microscopic
model, a collection of harmonic oscillators of which one
collective coordinate is driven [10], to analyze the distri-
bution of work and study both effects of quantum dynam-
ics and measurement. Our results do not rely on any
assumed Markovian form of reduced equations of motion
or the detailed balance condition. When the measurement
is treated classically we show that the distribution of
work is Gaussian and the Jarzynski relation is recovered
in the high-temperature limit. Quantum low-temperature
corrections are expressed as a semiclassical expansion in
�h. However, more dramatic effects are obtained when
using von Neumann’s prescription [11] which [see
Eq. (1)] properly takes into account the projection (col-
lapse of the wave function) induced by the measurement
process. We then predict the breakdown of the Gaussian
profile of work and the appearence of long algebraic tails
which are sensitive to the measurement error bar.
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We assume the Hamiltonian Ĥf��� � Ĥ � f���Q̂,
where Ĥ represents the nondriven system and the second
term represents the driving force f��� coupled to a
collective coordinate Q̂ which is a linear combination
of the oscillator coordinates. (The model can be also
viewed as a quantum oscillator coupled to a harmonic
bath with arbitrary spectral density.) The work made by
the driving force during the time interval �0; t� is de-
scribed by the operator ŵ � �

R
t
0 d� _f���Q̂���.

The dynamics and the measurement process are most
clearly treated using superoperator algebra in Liouville
space. This keeps track of time ordering and allows a
smooth transition to the classical limit [12–14]. The
quantum dynamics of an arbitrary variable Q in
Liouville space involves two replicas: QL (left) and QR
(right) that represent the ket and bra components of the
density matrix ��QL;QR�, respectively. The semiclassical
expansion is facilitated by introducing the variables
Q� � �QL �QR�=2 and Q� � QL �QR. Q� is a classi-
cal coordinate variable and Q� is a quantum coordinate
which carries information about coherence (phase). The
classical limit can be reproduced by using the Wigner
representation of the density matrix, obtained by a
Fourier transformation with respect to Q�. This results
in a phase space distribution ��Q�; P�, where P is the
momentum variable conjugate to Q�.

We now turn to a quantum treatment of the measure-
ment [8,12,15]. Because of dissipation the work produced
by an external force is a path function which can be
obtained by a repeated measurement of the particle tra-
jectory throughout the time interval. The distribution
P �w� thus depends on how continuous measurements
affect the quantum system. This issue, especially in the
semiclassical regime, has drawn considerable attention
[16–18]. Using the von Neumann principle, the effects of
measurements may be incorporated by either collapsing
the wave function of the measured variable directly
(strong measurement), or by temporarily coupling the
measured variable to an intermediate system (device)
followed by collapsing in the intermediate system
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(weak measurement). In this Letter we focus on strong
measurement and derive an expression for the probability
distribution function (PDF) for stochastic trajectories
(the probability of a certain outcome in a series of
measurements).

We introduce a set M of outcomes and associate a set
of measured values qn for n 2 M. The effect of a mea-
surement on the system is described by a set of functions
f ngn2M of the collective coordinate Q that satisfy the
property of unit decomposition

P
n2Mj n�Q�j

2 � 1. The
effect of the measurement with an outcome n 2 M on
the system wave function j�i is given by the action of the
operator  ̂n followed by a proper normalization, whereas
the outcome probability is given by the aforementioned
norm. The wave function j�0

ni and the corresponding
density matrix �̂0

n after the measurement are

j�0
ni �

 ̂nj�i���������������������������
h�j ̂y

n  ̂nj�i
q ; �̂0

n �
Ŵn��̂�

Tr�Ŵn��̂��
; (1)

where Ŵn��̂� �  ̂n�̂ ̂
y
n , or adopting Liouville-space no-

tation Ŵn �  ̂nL ̂
y
nR. The outcome probability is then

P �n� � Tr�Ŵn��̂��. This immediately results in the fol-
lowing Liouville-space correlation function expression
for the PDF for stochastic trajectories n � �n1; . . . ; nN�
that describe the measurement outcomes at times
�1; . . . ; �N:

P �n� �
�YN
j�1

Ŵnj��j�
�
: (2)

The angular bracket stands for the complete trace
weighted with an initial canonical distribution of the
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complete system at the initial time when f � 0, and the
time evolution is determined by the entire driven
Hamiltonian. Conservation of probability is guaranteed
by the unit decomposition property. The von Neumann
prescription [11] which represents an ideal measure-
ment where  n are orthogonal corresponds to a special
choice of the collapsing parameters M � Z ;
qn � "n;  n�Q� � 1 for Q 2 ��"=2� qn; "=2� qn� ;
 n�Q� � 0 otherwise. The reason for generalizing that
prescription will be discussed below. To simplify the
computation of work we assume a staircase profile of
the force, i.e., f��� � fj for � 2 ��j; �j�1� with j �
1; . . . ; N. In this case _f��� �

P
j�fj���� �j� and w �

�
P
j�fjQ��j�. The work is made only at discrete points

(rather than continuously), which are taken to be the
points of measurements. Substituting the integral repre-
sentation of the collapsing operator

Ŵ n �
Z
dq�dq�Wn�q�; q��

Z dp�dp�

�2��2

� exp�ip��Q̂� � q�� � ip��Q̂� � q���; (3)

expressed in terms of the Liouville-space collapsing func-
tion

Wn�q�; q�� �  n

	
q� �

q�
2



 �
n

	
q� �

q�
2



; (4)

into Eq. (2) and expressing the Liouville space time–
evolution superoperator of a driven system in terms of
that of the nondriven system [f��� � 0], the PDF of the
measurement outcomes that depends parametrically on
the driving force profile f��� adopts the form
P �n; f� �
Z
dq�dq�

YN
j�1

Wnj�qj�; qj��
Z dp�dp�

�2��2N

� exp
�
�i

XN
j�1

�pj�qj� � pj�qj��


�

�
exp

�
i
XN
j�1

�pj�Q̂���j� � pj�Q̂���j�� �
i
�h

Z t

0
f���Q̂����


�
; (5)

where hereafter h. . .i denotes the time-ordered Liouville-space correlation function (that constitutes a full trace with
respect to the complete density matrix and also performs time odering) of the nondriven system whose time evolution is
determined by the nondriven Hamiltonian Ĥ. We shall evaluate Eq. (5) using the second order cumulant expansion
which is exact for a linearly driven harmonic system linearly coupled to a harmonic bath at arbitrary temperature [10].
Since in our case the force profile f��� is determined by the force vector f � �f1; . . . ; fN�, the PDF (which only depends
on f1; . . . ; fN�1) can be represented as

P �n;f� �
Z
dq�dq�

YN
j�1

Wnj�qj�; qj��
Z dp�dp�

�2��2N

� exp
	
�
1

2

X
jk

�M���
jk pj�pk� � i�h

Xk<j
jk

�M���
jk pj�pk�



�exp

�
�i

X
j

�pj�qj� �pj�qj��� i
Xk�1<j

jk

ujkpj�fk



; (6)

with ujk �
R
�k�1
�k

d�G���j � ��, �M���
jk � G���j � �k�. Here G��t� � hQ̂��t�Q̂��0�i and G��t� � �i �h�1hQ̂��t�Q̂��0�i

are two-point Liouville-space correlation function and response function of the collective coordinate, respectively, in
the nondriven system. They are related by the fluctuation-dissipation theorem and both can be computed by a complete
trace with respect to the total density matrix, and keeping track of time ordering. Usually they are expressed in terms of
the bath spectral density [10]. The measurement effects enter through the Liouville-space collapsing
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function Wn�q�; q�� [Eq. (4)]. Ignoring quantum mea-
surement effects is equivalent to adopting the following
form for the collapsing function: Wn�q�; q�� � 1 for
q� 2 ��"=2� qn; "=2� qn� and 0 otherwise. In this
case Eq. (2) has a well-defined limit of infinitely frequent
(continuous) measurements and the PDF for a stochastic
trajectory q��� that represents the measurement outcome
then becomes

�P �q; f� �
Z

Dp exp
�
�i

Z t

0
d�p���q���




�

�
exp

	
i
Z t

0
d�

�
p���Q̂����

� �h�1f���Q̂����


�

: (7)

Equation (7) can be rationalized as follows: the path
integral over the functions p��� constitutes a Fourier-
transform representation of the functional � function
that collapses the classical coordinate trajectory Q����
to the stochastic (observed) trajectory q���, whereas the
Q̂���� term accounts for the effects of the driving force.
The PDF of work can be represented in a path-integral
form where integration goes over the stochastic trajecto-
ries q��� obtained as a result of continuous measurements
of the collective coordinate:

P �w; f� �
Z

Dq�� �w�f; q� � w� �P �q; f�

�
Z 1

�1

d!
2�

exp��i!w�S�!; f�; (8)

where we have introduced the work generating function
S�!; f�. Combining Eqs. (7) and (8) leads to the following
Liouville-space correlation function expression for the
generating function S0�!; f� in the classical measurement
limit:

S 0�!; f� �
�
exp

�
�i

Z t

0
d��! _f���Q̂����

� �h�1f���Q̂�����

�
: (9)

Equation (9) is exact for any quantum system (not neces-
sarily harmonic) and at arbitrary temperature; the only
approximation made is the classical treatment of the
meaurement.

For a linearly driven harmonic system the second-order
cumulant expansion yields a Gaussian form for the gen-
erating function in !which results in a Gaussian profile of
work P �w; f� � �1="

�������
2�

p
� exp����w� �w�2=2"2�� where

�w � �
R
t
0 d�

00
R
�00
0 d�0G���

00 � �0� _f��00�f��0� and "2 �
2
R
t
0 d�

00
R
t
0 d�

0G���
00 � �0� _f��00� _f��0�. A semiclassical

expansion is obtained by partitioning the Green function
G��t� � G0�t� �Gq�t� into a sum of its classical limit
G0�t� and quantum correctionsGq�t�, and making use of a
relation G��t� � �#dtG0�t� for t > 0. Representing the
generating function as S0�!; f� � exp��#F 0�!; f�� with
# � �kT��1 and F 0�!; f� � F c�!; f� �F q�!; f�, and
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using f�0� � 0 we obtain after some straightforward
transformations

F c�!; f� �
!2

2#
G0�0��f�t��

2 � i!#�1

	
1�

i!
#




�
Z t

0
d�00

Z �00

0
d�0G���00 � �0� _f��00�f��0�:

(10)

To establish the connection with Jarzynski’s relation
we examine the Helmholtz free energy �F �t� computed by
assuming that the system is equilibrated with the instan-
taneous external force f�t�:

�#�F �t� �F �0�� � #2G��0��f�t��
2

2
: (11)

Combining this with the identity �#F 0��i#; f� �
lnhexp��#w�f��i which follows directly from the defini-
tion of F 0 we get

lnhexp��#w�f��i � �#� �F �t� � �F �0�� �Rq: (12)

The Jarzynski relation is obtained by setting Rq � 0,
G� � G0, and F 0 � F c in the high-temperature (clas-
sical) limit and making use of Eq. (10) that implies
F c��i#; f� � �#G0�0��f�t��

2=2. The quantum correc-
tion

R q�f� � #2
Z t

0
d�00

Z �00

0
d�0 _Gq��00 � �0� _f��00�f��0�

(13)

is analytic in �h and represents deviations from the
Jarzynski relation. To lowest nonvanishing order in �h
we have _Gq � � �h2#=3� �G�. Equation (13) then gives an
� �h2 deviation from Jarzynski’s relation. In general
hexp��#w�f��i is a path function that depends on the
entire time profile of the force and only in the classical
limit does it solely depend on its value at the boundary
[f�0� and f�t�], which is required for the Jarzynski rela-
tion to hold. This path dependence enters through Rq. A
semiclassical expansion can be also developed for a gen-
eral (anharmonic) system by keeping all variables (in-
cluding the bath) and considering a quantum counterpart
of the generating function used in [2] to derive the rela-
tion for a Markovian (local-in-time) equation of motion.
We can use the fact that the quantum canonical distribu-
tion exp��#Ĥ� is obviously a stationary solution of the
quantum Liouville equation. The proof of Jarzynski [2]
breaks down in the quantum case because of the non-
commuting nature of quantum operators. Expanding the
commutators results in a regular expansion in �h of the
corrections to the Jarzynski relation.

So far we considered a quantum system subjected to a
classical measurement. Quantum measurements are dis-
crete and we shall illustrate their effects by applying the
von Neumann prescription for N � 2 measurements. We
note that in this case performing integrations over q1�
and q2� leads to a continuous function of q1� that has
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jumps of the first derivative at q1� � 0 and q1� � "1=
���
2

p

(note that in the semiclassical case the second jump is
negligible with respect to the first) that determines the
P �n1; n2� � �n2��2 asymptotic. Computing the first de-
rivative jump at q1� yields the following asymptotic
expressions for large n1 and n2:

P �n1; n2; f� �
�h �M���

��"2n2 � '"1n1 � uf�2

�
"2�����������������

2� �M���
p exp

�
�

1

2 �M���
�"1n1�

2



:

(14)

For simplicity we assume different error bars "1 and "2
chosen such that the work produced at both jumps is
measured with the same precision �" so that w �
f1"1n1 � �f2 � f1�"2n2 � �" �n ; �n � n1 � n2. The distri-
bution of work is then computed by P � �n; f1; f2� �P

1
n��1 P �n; �n� n; f1�. Equation (14) then gives

P � �n; t� �
�hG��t�jf1jjf2 � f1j

� �"2 �n2
;

P �w; t�dw �
�hG��t�jf1jjf2 � f1j

w2

dw
� �"

: (15)

Unlike quantum dynamics which only makes small semi-
calssical corrections to the distribution of work, the
quantum measurement induces an extended tail of
P �n1; n2� with respect to n2, which results in a power
law decay of P �w�. The origin of this algebraic tail can be
understood as follows: Classical coordinate measurement
selects a particular value of the classical coordinate Q�

but does not affect the quantum variable Q�.We can then
divide the phase space �QL;QR� [or �Q�; Q��] into bins;
stripes of width

���
2

p
" alongQ�. The total distribution � �P

mNm��� is simply the sum of the various bins and is not
affected by the measurement. Since no information is lost
about the distribution, classical measurement involves no
collapse, just binning. In a quantum measurement, in
contrast, we retain boxes of width �" in both diagonal
and off-diagonal directions. This implies that both the
classicalQ� and quantumQ� variables are collapsed in a
similar fashion. Since Q� is conjugated to the particle
momentum, measuring the coordinate (necessary to keep
track of the work performed) affects not only the particle
coordinate, but its momentum as well, as required by the
Heisenberg uncertainty principle. We thus discard
the information about the coherence �jQ�j> "� each
time we make a measurement and the total distribution
changes since some coherence is necessarily erased by the
measurement. This is how collapse is viewed in Liouville
space. Because of this, even a harmonic system that starts
as a Gaussian distribution in phase space becomes non-
Gaussian once subjected to the measurement.

The long tails arise from the sharp edges of the
von Neumann binning, which represents an ideal mea-
surement whereby the functions  n are orthogonal. It is
048302-4
possible to use a smoother set of functions provided we
retain the property of unit decomposition. In that case we
introduce some uncertainty into the measurement, since
the bins in �Q�; Q�� space overlap and the functions  n
are no longer orthogonal. However, this fuzziness allows
one to truncate the coherence more gradually. Smoothing
the collapsing functions will eliminate the long tails in
the PDF, however if the smoothing regions are narrow,
Eq. (14) will still represent the intermediate regime. At
larger values of of w, P �w� will cross over to a different
asymptotic behavior which will depend on the details of
collapsing functions  n. The present analysis may be
applied to quantum computing where repeated measure-
ments are essential for the control, retrieval, and manipu-
lation of quantum information. These effects may also
be observed in single molecule spectroscopy with me-
chanical forces (tweezers) or by using photon counting
statistics.
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