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Oscillatory Activity in Electrosensory Neurons Increases with the Spatial Correlation
of the Stochastic Input Stimulus
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We present results from a novel experimental paradigm to investigate the influence of spatial
correlations of stimuli on electrosensory neural network dynamics. Further, a new theoretical analysis
for the dynamics of a model network of stochastic leaky integrate-and-fire neurons with delayed
feedback is proposed. Experiment and theory for this system both establish that spatial correlations
induce a network oscillation, the strength of which is proportional to the degree of stimulus correlation
at constant total stimulus power.
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The nontrivial effects of noise on the dynamics of
physical, chemical, and biological systems are beginning
to be uncovered [1]. In particular, stochastic forcing can
sometimes produce qualitative dynamics that are absent
in the deterministic system. Neural networks [2–5] are
ideal for the study of stochastic dynamics in spatially
extended systems, since noise constitutes a significant
component of neural activity. However, while specific
dynamics have been linked to combinations of network
architecture and stochastic forcing, direct functional in-
terpretation of the noise-induced dynamics are often
lacking. A common feature of neural network architec-
ture is that higher-order stages of processing influence
lower-order stages through delayed feedback projections
[6–8]. Much theoretical work has focused on the dynam-
ics that such a recurrent connectivity produces, both with
[4,9,10] and without [11] explicit axonal delays. Never-
theless, the functional role that delayed feedback plays in
biological neural networks is poorly understood. Thus,
the combination of stochastic forcing and delayed net-
work interactions is a timely yet relatively unexplored
area of study.

In a recent study, we showed how diffuse delayed
inhibitory feedback caused oscillatory spike trains from
electrosensory neurons in response to stochastic com-
municationlike, but not preylike, stimuli [12]. It was
hypothesized that the key distinguishing feature between
these two inputs was that communication stimuli corre-
late the activity of many neurons while prey stimuli do
not. However, in [12], we were unable to separate this
correlation from the fact that communication stimuli
have a greater degree of spatial power since they cover
large portions of the sensory field [13]. This is in contrast
to prey which are spatially compact stimuli. In this Letter,
we show through a combination of novel experimental
and theoretical analyses that it is indeed the spatial cor-
relation in stimuli and not the total spatial power that is
essential for oscillatory network spiking.
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Experiments.—The weakly electric fish Apteronotus
leptorhynchus has an electric organ that discharges a
quasisinusoidal electric field (between 600 and
1000 Hz) surrounding its body [14]. Nearby objects or
communicating fish distort this field so that an effective
electric image is projected on the surface of the skin.
These distortions are amplitude modulations (AMs) of
the carrier field and are recorded by arrays of electro-
receptors that line the surface of the skin. The electro-
receptor afferents project to pyramidal cells of the
electrosensory lateral line lobe (ELL) which process in-
put and then project to higher brain centers [8]. These
centers then output back to the ELL pyramidal cell layer
producing an effective closed loop architecture for pe-
ripheral electrosensory processing.

To explore the effects of stochastic stimuli with vari-
able spatial correlation, an array of four dipoles was
constructed and placed near the surface of the skin
[Fig. 1(a)]. The jth dipole in the array (j � 1; . . . ; 4)
emitted a random AM, Ij�t�, consisting of two distinct
stochastic processes, one intrinsic to the dipole, �i�t�, and
one common to all dipoles, �G�t�. Specifically, we write

Ij�t� � ��
������������
1� c

p
�j�t� �

���
c

p
�G�t��; (1)

where � is the total intensity of the applied stimulus Ij
measured in units of Vcm�1 (� is kept constant for our
study). Both �i�t� and �G�t� are zero mean and Gaussian
with a frequency content that was uniformly distributed
between 0–60 Hz (eighth order Butterworth filter). We set
h�j�t��G�t�i � 0 and h�j�t��k�t�i � �jk. This implies that
hIj�t�Ik�t�i=hIj�t�

2i � c, where c is the normalized cova-
riance between any two dipoles in the array. Stimuli are
spatially uncorrelated for c � 0, similar to that produced
by a root mass or rocky substrate, while c near one
mimics a communication signal. We remark that the total
spatial power of the input, 4�2, is independent of c.
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FIG. 1. Spatial correlation of stimuli determines oscillatory
activity in electrosensory neurons. (a) Schematic of experimen-
tal stimulation. Single unit activity was recorded from ELL
pyramidal cells while one side of the fish was stimulated with
an array of four dipoles. Each dipole had a tip spacing of
approximately 1.2 cm and the centers of adjacent dipoles
were separated by 2.2 cm. Each dipole was 1.5 cm from the
skin surface and stimulated roughly 2 cm2 of the skin for
typical stimulus contrasts (250 �Vcm�1). This ensured that
there was limited overlap of the distinct dipole’s electric
images on the skin. (b) Spike train power spectra, S, when
the spatial correlation between the dipoles, c, was set to 0 (light
curve) and one (dark curve).
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Single unit in vivo extracellular recordings from ELL
pyramidal cells were obtained for various c values; ex-
perimental techniques are as in [12]. Figure 1(b) shows
the power spectrum of a spike train from a typical pyr-
amidal cell (n � 7) to stimuli with spatial correlation
c � 0 and c � 1.

A weak low-frequency oscillation is apparent when
c � 0. This oscillation is reduced and replaced with a
high-frequency oscillation when c � 1. To quantify this
shift in power with c, we introduce the statistic 
f1;f2;c �Rf2
f1
S�f� df, where S�f� depends on c. A shift in S�f�

between c � 0 and c � 1 gives a nonzero value in
�
f1;f2 � 
f1;f2;1 � 
f1;f2;0. Over our data ensemble (n �
7), we have that for low frequencies �
2;22 � �55:8�
20:7 (spikes2=s2) and for high frequencies �
40;60 �
53:7� 30:8 (spikes2=s2). These statistics are both signifi-
cantly different from zero (p2;22 � 3:9 � 10�4 and
p40;60 � 7:3� 10�3; pairwise t test). We note that the
relative difference in spike rate for c � 0 and
c � 1 was only 0:61� 0:43%, indicating that the shift
in power cannot be accounted for by changes in input
intensity. In total, these results show that ELL pyramidal
neurons redistribute spike train power from low to high
frequencies as the spatial correlations of a global input
increase.

Model.—Consider a nonautonomous homogeneous net-
work of N leaky integrate-and-fire (LIF) neurons [10].
The dynamics of the membrane potential Vj�t� of the jth
neuron (j � 1; . . . ; N) evolves according to

_V j � �Vj ��� �j�t� � Ij�t� �
g
N

XN
k

K�d 
 xk�t�: (2)
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Time is measured in units of the membrane time constant
(6 ms). The dynamics is complemented by the usual
spike-and-reset rule: Whenever Vj�t� reaches the thresh-
old vT , a spike is fired (the mth firing time of the jth
neuron is denoted by tj;m), and the neuron is in an absolute
refractory state for time �R followed by a reset of Vj to the
value vR. The spike train of the jth neuron reads xj�t� �P
��t� tj;m� (the sum is taken over all spike times). In

Eq. (2), the single neuron properties are described by
�Vj, �, and �j�t� standing for a leakage term, a constant
base current, and an internal Gaussian white noise of
intensity D, respectively. This intrinsic noise leads to
spontaneous activity even in the absence of stimuli, as
also observed in experiments [15]. Furthermore, we as-
sume that the external stimulus I�t� used in the experi-
ments according to Eq. (1) is transduced by the afferents
into an input current I�t� of the same shape; instead of
band limited noise, however, we use white noise in the
model, for simplicity. The last term in Eq. (2) represents a
mean-field-like feedback of the spike trains of all neurons
which is convolved with a standard  function [10] and
delayed by a time �d:

K�d 
 x�t� �
Z 1

�d
d� x�t� �� 2�e� �����; (3)

where ��t� is the Heaviside function [16]. The kernel K�d
is conceived as a composite process by which pyramidal
cells first project their output to a ‘‘higher’’ brain center
which integrates this input and then projects uniformly
back to the original network via a common feedback
pathway. This effective indirect interaction between cells
via K�d also involves a significant minimal delay term,
�d, modeling both the integration time of the distant brain
regions and finite axonal conduction velocity. The time
scale of �d for the inhibitory pathway of interest is of the
order of the membrane time constant (6 ms) [8,12]. The
parameter  thus both represents a fast synaptic time
scale and a distribution of delays. In this study, we confine
g < 0 to model the inhibitory interactions of a specific
feedback pathway previously shown to cause oscillatory
network behavior [12]. Other known feedback pathways
[8] are not treated (see [12] for biophysical justification).
In order to allow for an analytical treatment, our model
differs slightly from the one in Ref. [12]: Inhibition enters
as an additive current term and the internal noise is white.

Theory.—In the steady state, we split the input currents
into two parts: (i) base and leak currents, internal noise of
strength D, and time-independent mean of the feedback
��gr0�[r0 � hx�t�i is the stationary firing rate of a single
LIF neuron]; (ii) external signal and time-dependent part
of the feedback. The first part constitutes a network of
uncoupled white-noise driven LIF neurons with an effec-
tive base current �0 � �� gr0��

0� that has to be self-
consistently determined from the well-known formula
for the spike rate of a single LIF neuron r0��0� � ��r �����
$

p R��0�vR�=
���
D

p

��0�vT �=
���
D

p dx ex
2
erfc�x���1 [erfc�x� is the comple-

mentary error function [16] ]. With respect to the
048101-2
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FIG. 2. Network model simulations and theoretical results for
spatial correlation c � 0 and c � 1. (a) Spike train power
spectra S for the network model given by (2) (c � 0, open
circles; c � 1, closed circles) and the theoretical result (5) (c �
0, thin line; c � 1, thick line). (b) Network raster plots for the
simulations shown in (a). The top plot is for c � 0 and the
bottom plot is for c � 1. The parameters for both the simula-
tions and theory were vR � 0, vT � 1, �R � 0:1, � � 0:5, g �
�1:2,  � 3, �d � 1, D � 0:08, �2 � 0:16, and �0 � 0:3286.
All simulations were integrated via a Euler integration scheme
with a time step of 10�3. The plots were rescaled so that the
membrane time constant was 6 ms; note that ! � 2$f.
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time-dependent part of the feedback and the external
input stimulus, we treat the system as a linear one char-
acterized by the susceptibility A�!� with respect to the
input stimulus. Expressed by ~x�0;�j � F̂�x�0;�;j � r0�=

����
T

p

(F̂ �
R
T
0 dt e

i!t denotes the Fourier transform; xj�t� and
x0;j�t� are the spike train in the presence and absence of
stimulus and feedback, respectively), this ansatz reads

~x j�!� � ~x0;j�!� � A�!�
�
~Ij�!� �

g
N

~K�d�!�
X
k

~xk�!�
�
;

(4)

where ~Ij�!� � F̂Ij�t�=
����
T

p
and ~K�d�!� � F̂K�d�t�=

����
T

p
.

Our choice of K�d gives ~K�d�!� � ei!�d=�1� i! �1�2.
Equation (4) provides a system of equations relating

h~xj~x
j i (spike train power spectrum), h~xj~x
ki (j � k; cross
spectrum between distinct spike trains), and h~xj~I



j i (cross

spectrum between the stimulus and a spike train), where 

denotes complex conjugation. We further assume that
h~x0;j~x



0;ki � h~x0;j~I



j i � h~xj ~�



ki � 0 �j � k� and that N !

1 so as to neglect terms of order 1=N and higher.
Finally, we replace the spectrum of the transmitted
stimulus S0�!;D� � �2jA�!;D�j2, as it arises from pure
linear response theory, by S0�!;Q�, where Q � D�
�2=2, representing the total noise intensity. Con-
sequently, the susceptibility A is also evaluated at Q.

With these assumptions it can be shown [17] that the
power spectrum of the spike train from a representative
neuron, S � h~xj~x



j i (with T ! 1), is given by

S � S0 � c�2jAj2
2<�g ~K�dA� � jg ~K�dAj

2

j1� g ~K�dAj
2

: (5)

We let S0 � h~x0~x


0i and have dropped both the j notation

and the ! dependence for S. Equation (5) shows that c
simply sets the strength of the deviation of S from the
uncoupled case (S0). The precise form of the deviation is
determined only by the internal (A) and feedback (K�d)
dynamics.

Equation (5) is applicable to a variety of neuron mod-
els; the special form of the LIF neuron allows for ana-
lytical expressions for both S0 and A [18]:

S0�!;Q� � r0
jDi!�

�0�vT���
Q

p �j2 � e2�jDi!�
�0�vR���

Q
p �j2

jDi!�
�0�vT���

Q
p � � e�ei!�RDi!�

�0�vR���
Q

p �j2
;

A�!;Q� �
r0i!=

����
Q

p

i!� 1

Di!�1�
�0�vT���

Q
p � � e�Di!�1�

�0�vR���
Q

p �

Di!�
�0�vT���

Q
p � � e�ei!�RDi!�

�0�vR���
Q

p �
;

where � � �v2R � v2T � 2��vT � vR��=4Q and Da�z� de-
notes the parabolic cylinder function [16].

In Fig. 2(a), we show S computed via both simulations
of the network model (2) and the theory as given by (5)
when c � 0 and c � 1 . The simulation and theory results
match quite well for the chosen parameters. As c is
increased, we see qualitative agreement with the experi-
ments in several respects. For c � 1, the deviation term in
048101-3
(5) introduces a 50 Hz oscillation and a suppression of
power at low frequencies, as compared to the c � 0 case.
However, we note that the experimental results also con-
tain a low-frequency oscillation when c � 0; this is not
reproduced by either the simulations or the theory. The
origins of this low-frequency oscillation are currently not
known; however, our mathematical model of the ELL
does not include other known feed forward and feedback
pathways [8]. Figure 2(b) shows spike time raster plots
from the simulations of Fig. 2(a). They show that for
c � 0 there is relatively asynchronous behavior, whereas
for c � 1 a degree of network synchrony is apparent.
However, computing the average correlation coefficient
between any two cells shows only an increase from ap-
proximately 10�4 to 0.065. The results of Fig. 2 were not
sensitive to model parameters; the model presented in
[12] shows similar behavior as does the present model
for a range of � values spanning both the sub- and supra-
threshold (�< vT and �> vT). Network oscillations
emerging from relatively asynchronous sparsely con-
nected stochastic delayed networks have been reported
for a similar system [4], however, spatial correlation of
the input was not considered; also in contrast, our net-
work is not sparse. The effects of spatial correlation have
been studied numerically in locally and electrically
coupled networks of FitzHugh-Nagumo neurons [3] to
be compared to the globally and inhibitory coupled net-
work studied here. In [3], it was observed that regularized
activity occurred for low input spatial correlations, in
contrast to the results presented here.

A consequence of a linear response treatment of net-
work (2) is that the shift in power is linear in c. To show
048101-3
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FIG. 3. Oscillation dependence on stimulus correlation and
axonal delay. (a) 
f1 ;f2;c plotted as a function of c for both
�f1; f2� � �2; 22� Hz (theory, thin line; simulations, open
circles) and �f1; f2� � �40; 60� Hz (theory, thick line; simula-
tions, filled circles). Numerical integration of S computed from
(5) was done with a fixed interval of �f � 0:1 Hz, while
integration of S determined from simulation of (2) used the
fast-Fourier transform discretization step of �f � 0:5 Hz.
(b) 
 obtained from spike trains of ELL pyramidal cells for
a range of c values. Data were obtained from same experiments
as those for Fig. 1. (c) S shown for �d � 0:5 (theory, thin curve;
simulations, open circles) and �d � 3 (theory, thick curve;
simulations, filled circles). c � 1 for both curves. All other
parameters are as given in Fig. 2.
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this, we plot in Fig. 3(a) 
f1;f2;c as a function of c for both
low-frequency and high-frequency bands. There is good
agreement between 
 obtained from the theory given by
(5) and simulation of the network (2). The validity of our
linear response ansatz for ELL pyramidal cells is sup-
ported experimentally when 
 is measured from ELL
pyramidal neurons for a range of c values, shown in
Fig. 3(b).

We finally study the dependence of the network oscil-
latory dynamics on the axonal delay �d. Figure 3(c) shows
S for �d � 0:5 and �d � 3 (or in real time 3 and 18 ms,
respectively). As expected, the frequency of oscillation
decreases when �d increases, due to the ei!�d term in K�d .
However, of interest is that the oscillation coherence
(height of peak in S divided by peak half width) is
significantly larger for larger �d. This is understood
from the low pass nature of both the susceptibility A
(specifically jAj2) and the kernel K�d (due to  ). When
we take A! 1 and  ! 1 in Eq. (5), the coherence of
the oscillation in S shows no dependence upon �d (results
not shown).

Inhibitory feedback, with or without axonal delays,
giving rise to network oscillations is a well studied phe-
nomenon [4,9–11]. The effect of spatiotemporal stimuli
on the dynamics of networks of noisy neurons, and, in
particular, on the presence of oscillatory spiking, is
poorly understood. Here we have shown using novel
experimental and theoretical methods that the spatial
correlation of the stimulus alone can induce such oscil-
048101-4
lations; this effect does not require an increase in the
stimulus power integrated over space. Oscillatory net-
work behavior in response to specific stimuli are now
being catalogued in a variety of sensory systems
[6,12,19]. Accounting for input-dependent dynamical
phenomena, as shown here, will provide a deeper under-
standing of sensory brain function and, more generally, of
nets of excitable elements.
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