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The 2D quantum phase transition that occurs in a square lattice of Josephson-coupled p� ip
superconductors is an example of how four-body interactions in d � 2 reproduce nonperturbative
effects caused by two-body interactions in d � 1. The ordered phase has an unconventional ‘‘bond
order’’ of the local T-breaking variable. This problem can be analyzed using an exact self-duality; this
duality in classical notation is the 3D generalization of the Kramers-Wannier duality of the 2D Ising
model, and there are similar exact dualities in dimensions d � 3. We discuss the excitation spectrum
and experimental signatures of the ordered and disordered phases, and the relationship between our
model and previously studied behavior of 2D boson models with four-boson interactions.
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Many topical problems in condensed matter physics
are described by effective Hamiltonians with explicit
three- or four-body interaction terms, even though the
underlying Coulomb interaction between particles is only
a two-body interaction. An example is the Pfaffian state
of paired composite fermions in the fractional quantum
Hall effect [1], which is the exact ground state of a three-
body interaction [2]; this state has been observed at � � 5

2

[3]. Regular Josephson-junction arrays of a p� ip super-
conductor such as Sr2RuO4 can be modeled by a multiple-
spin lattice Hamiltonian [4], as can several models of
frustrated magnetism [5] and superconductivity [6]. This
Letter considers quantum effects on a classical four-spin
Hamiltonian as an improved model of a p� ip super-
conducting array, and presents several exact results on the
resulting 2D quantum phase transition.

This analysis is based on an exact strong-weak cou-
pling self-duality for multiple-spin interactions in high
dimensions, generalizing the Kramers-Wannier duality
[7] of the classical Ising model in 2D or the quantum
Ising chain in 1D. This higher-dimensional self-duality
continues recent developments [6,8] showing that phe-
nomena that occur with two-body interactions in one
quantum dimension, such as spin-charge separation, can
also be realized by three- or four-body interactions in two
quantum dimensions. Superconducting arrays and frus-
trated magnets are important examples of this physics
because they can generate three-, four-, or six-spin inter-
actions without two-spin interactions, essentially because
of unusual symmetries. There are many known dualities
in d > 2 that relate a strong-coupling regime of one model
to a weak-coupling regime of another model, e.g., the
duality between the 3D Ising model and 3D Z2 lattice
gauge theory, but self-dualities are quite rare in d > 2 [9].

We start from the following classical model of Ising
spins on a square lattice:
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where s�
i � �1, i � 1; . . . ; 4 are Ising variables at the

four corners of one face of the lattice, and the sum is over
all faces. This model was recently introduced [4] to
understand the effects of frustrating geometric phases in
a square array of superconducting grains where each
grain has either p� ip or p� ip order: the state of grain
i is described by both a phase �i and an Ising variable
si � �1 that determines the order parameter p� isip.

The same geometric phases that led to the experimen-
tal determination of d order in the cuprates [10,11] lead to
frustration of the superconductivity unless each plaquette
of four grains has an even number of Ising �1 spins (and
an even number of �1 spins) [4]. The phase � acquired by
a Cooper pair moving around a plaquette is determined
by the states si � �1 of the four grains at corners i �
1; . . . ; 4: � � 

2 �s1 � s2 � s3 � s4�. This phase is equiva-
lent to zero if the plaquette has an even number of �1
spins, and otherwise equivalent to , which generates the
local energy in (1) proportional to s1s2s3s4. Josephson
weak links [12] have been made in superfluid He3, and in
one phase the symmetries of the weak link break the
symmetry group down to p� ip.

The classical model (1) also describes the two-
dimensional ‘‘right-angle water’’ ice model [13] and
maps onto to a case of the eight-vertex model [4,14].
Note that (1) is not ordinary 2D Z2 gauge theory, where
the sum is over bond variables �i around each face. The
overall symmetry group is much smaller for (1):
Vol�G0� � 2Nx�Ny rather than the full gauge group
Vol�G� � 2NxNy of Z2 gauge theory. The problem (1) has
a one-dimensional ground-state degeneracy 2Nx�Ny even
with no physical boundary (e.g., on a torus). The model
can be solved in the thermodynamic limit for all K: its
free energy per face is just �f � � log�2 coshK�, since all
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FIG. 1. The classical anisotropic 3D problem that describes
the quantum critical point of the model (2). The two types of
interactions (shaded bonds) are plaquette interactions in the
planes normal to ẑ, and bond interactions along ẑ.
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the face variables can be chosen independently. The
model is equivalent to the 1D Ising model and has no
phase transition.

The model becomes quantum mechanical in the pres-
ence of a transverse magnetic field:

H � �K
X
�

�z
1�

z
2�

z
3�

z
4 � h

X
i

�x
i : (2)

Here again the K interaction is around a plaquette but now
the spin is a quantum spin-half and the � are Pauli
matrices. In the superconducting array realization, the
magnetic field h corresponds to tunneling between the
two order parameters p� ip, which will in the limit of
strong tunneling induce a single real order parameter px.
Application of pressure in Sr2RuO4 is found experimen-
tally to drive the system toward a real p state [15], but the
explanation of this effect is unclear. The model (2) is
clearly one of the simplest possible 2D lattice quantum
Hamiltonians with four-spin interactions. The main
weakness of the model (2) is that in the real system at
low T there is a long-ranged vortex-vortex interaction
between frustrated plaquettes [4]; the Hamiltonian (2)
corresponds to treating the core energy of a vortex but not
its interaction with other vortices, as might be appropriate
at higher temperatures.

We now show that the quantum model (2) has a phase
transition at zero temperature when K=h is exactly one.
For simplicity we will give the model’s self-duality here
in its classical form; the same duality can be shown
directly in the quantum model (2) and interchanges K
and h [16]. The 3D anisotropic classical model

�E � � ~K
X
�
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�
2 s

�
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�
4 � Jz

X
b

sb1s
b
2 ; (3)

where � ranges over all plaquettes in the xy planes, and b
ranges over all bonds in the z direction (Fig. 1), will be
shown to have a phase transition along the line

sinh2 ~K sinh2Jz � 1: (4)

The connection between coupling constants in the clas-
sical model and in the quantum model is standard [17]:

~K � aK; e�2Jz � tanh�ah�; T �
1

Ma
; (5)

where a is the lattice spacing and M the number of sites in
the z direction of the classical model, and T is the
temperature in the quantum case.

The quantum-classical mapping becomes exact in the
limits T ! 0, a ! 0, and M ! 1. Knowing the phase
transition line in the classical model (4) fixes the quan-
tum transition because in the above limits

sinh2 ~K sinh2Jz ! ~Ke2Jz � K=h � 1: (6)
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The partition function of the above model is

Z �
X
fsg
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b
2 sinhJz��: (7)

Introduce face variables k� � 0; 1 and bond variables
kb � 0; 1, and define c0 � cosh ~K, c1 � sinh ~K, d0 �
coshJz, d1 � sinhJz. Then
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(8)

Now the spin sum can be evaluated: for each spin the
result is 2 if the spin is raised to an even power, and 0
otherwise. Z is a constrained sum over the k variables:

Z � 2N
X0

k�;kb

�Y
�

ck�

��Y
b

dkb

�
: (9)

Here N � NxNyNz is the total number of sites. Each site
of the original lattice appears via 4 face terms and 2 bond
terms. The constraint is that the sum of the six k variables
be an even number for every site.

Now introduce dual variables to solve the constraint.
The dual spins � are located at the centers of the funda-
mental cubes of the original cubic lattice. For a site i of
the original lattice, its four neighboring spacelike faces
are pierced by four vertical bonds of the dual lattice, and
for each piercing bond b of the dual lattice fix the relation
k� � 1

2 �1� �b
1�

b
2�. Each of the two vertical bonds b

containing site i pierces a spacelike face � of the dual
lattice, and we set kb �

1
2 �1� ��

1 �
�
2 �

�
3 �

�
4 �:

These variables satisfy the constraint since the eight
dual lattice sites �1; . . . ; �8 around an original site satisfy
k�1 � k�2 � k�3 � k�4 � kb1 � kb2 � 3�
1

2
��1�2�3�4 � �5�6�7�8 � �1�5 � �2�6 � �3�7 � �4�8� � 0mod 2:

(10)
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This holds if all spins are up, and flipping any spin
changes the sum by an even number. Next we need to
find how many dual spin configurations correspond to
one configuration of the k variables. The answer is just
the size of the gauge group Vol�G0� � 2Nx�Ny , since once
the dual spin configuration is set on a spacelike plane, the
vertical bonds fix the configuration everywhere else.

The last step is to calculate the dual couplings. Writing

ck � k sinh ~K � �1� k� cosh ~K; (11)

for a face � of the original lattice, pierced by Ising bond b
in the dual problem,

ck�
�

1� �b
1�

b
2

2
cosh ~K �
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1�

b
2

2
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b
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�
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where tanhJ�z � e�2 ~K. By the same process

dkb �
1																					

2 sinh2 ~K�
p e ~K���
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�
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�
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�
4 ; (13)

with tanh ~K� � e�2Jz .
Now we combine the above results: the number of

bonds parallel to ẑ and the number of spacelike faces
are both N � NxNyNz, so we have up to boundary terms

Z� ~K; Jz� �
Z� ~K�; J�z �

Vol�G0� sinh�2J�z �N=2 sinh�2 ~K��N=2
: (14)

More precisely, we have shown that in the limit N ! 1,

logZ� ~K;Jz�
N

�
logZ� ~K�; J�z �

N
�
1

2

� log sinh�2 ~K���
1

2
log sinh�2J�z �: (15)

The duality relation for the couplings is

sinh�2J�z ��
1

sinh�2 ~K�
; sinh�2 ~K���

1

sinh�2Jz�
: (16)

This determines the entire phase boundary line in the
� ~K; Jz� plane. It also shows that there is a hidden symme-
try between the couplings ~K and Jz. The same construc-
tion leads to an exact duality of the 4D model with eight-
spin interactions around spacelike cubes, plus a bond
interaction in the fourth dimension; and similarly for
any d � 2. The self-dual point is ~K � Jz � Kc �

1
2 �

log�1�
			
2

p
�. If there is only one phase transition in the

model at finite coupling, it must be at the self-dual line.
The self-duality of this model is similar to the classical
anisotropic self-dual Villain ZN models studied in [9].

We remark that the model can be solved if the system
has only one row of spacelike plaquettes: the bond vari-
ables bx � sx;1sx;2 become spins in an anisotropic 2D
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Ising model, and with e2J
0
� cosh2Jz,

logZNx�2�Nz
� ~K; Jz�

NxNz

�
logZ2DI

Nx�Nz
�2 ~K; J0�

NxNz
: (17)

If there is a single second-order transition in the 3D
classical model, then there is a second-order transition at
K � h in the quantum model. The spontaneous order that
develops across the transition is unconventional ‘‘bond
order.’’ At h � 0, the ground states all have long-range
order along every row of the vertical bond �z

i�
z
i�ŷ, and of

horizontal bonds along each column. Another way to
describe the h � 0 ordered state is using the Wilson
operator for the product of spins around a loop L,

W�L� �
Y
i2L

�z
i : (18)

In any ground state, hW�L�i � 1. We will use bond order
below to make a connection between the order parameter
and the excitation spectrum. The two orders are con-
nected since a closed loop contains an even number of
bonds from each row and column.

A Peierls-type argument can be used to show that there
is an ordered phase of the classical 3D model at low
temperature, and hence at least one phase transition. We
have performed Monte Carlo and high-temperature series
calculations to check whether the above model has a
single second-order phase transition (which must then
lie at the self-dual point Kc). The results are consistent
with this picture, but the single-spin Monte Carlo algo-
rithm becomes very slow close to criticality, as in [18].

The high-temperature series proves that this model
does not have the same free energy per site as an Ising
model, as might have been suspected since the classical
2D model with face interactions (1) has the same free
energy per site as the 1D two-spin Ising model. The first
terms for the classical symmetric model ( ~K � Jz) are

c � T
@s
@T

� �T
@2F

N�@T�2

� 2 ~K2 � 2 ~K4 � 94 ~K6=3�O� ~K8�: (19)

This differs from the d � 2 two-spin Ising model at order
~K4 and the d � 1 two-spin Ising model at order ~K6.

The quantum model (2) has an infinite but nonexten-
sive set of conservation laws: along any one of the Ny

rows, say R, the product

ÔR �
Y
i2R

�i
x (20)

commutes with the Hamiltonian (2), and similarly for
each of Nx columns. These Nx � Ny conserved quantities
are related to the ground-state degeneracy in the ordered
state. There are 2Nx�Ny sectors of the theory, labeled by
the eigenvalues of the operators (20). In the large-h phase,
there is a single ground state invariant under Nx � Ny

transformations that each act on all the spins in one row or
047003-3
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column via

�x ! �x; �y ! ��y; �z ! ��z: (21)

At the transition K � h in the thermodynamic limit,
these symmetries are spontaneously broken and there are
2Nx�Ny degenerate ground states once K > h. In a finite
system, there is no spontaneous symmetry breaking and
ground-state degeneracy on the ordered side K > hwill be
split by an amount exponentially small in min�Nx;Ny�.
The breaking of these many symmetries at a single tran-
sition occurs because of the infinite number of conserva-
tion laws. In the language of hard-core bosons, the charge
along each row or column is conserved modulo 2, just as
in the Bose metal model discussed in [6].

Now we consider the excitation spectrum in the two
phases of the quantum model. Recall the familiar quan-
tum Ising chain (d � 1) [17]: the lowest excitation in the
ordered phase with periodic boundary conditions is to flip
one spin from the ground state, so the first excited state
contains two bad bonds. These two bad bonds can be
separated into two kinks, with a string of flipped spins
between them. In the large h limit, all the spins point
along x̂ and the one-particle state is a flipped spin with
momentum and kinetic energy, with

'k � Kh2� 2=h cos �k� �O�1=h2��: (22)

For our model in 2D, in the large K limit the system stays
near the ground state manifold, and the first excited state
locally connected to the ground state is obtained by
flipping one spin. This flipped spin results in four bad
plaquettes (or four Z2 vortices). As in the d � 1 case, this
excitation can disintegrate into four fractional excita-
tions, which become four vertices of a rectangle with
all the interior spins flipped.

The large-h limit requires more attention. In the x̂
basis, it is clear that the single flipped spin is nondisper-
sive because of the Z2 conservation laws. The single
flipped spin in the large-h limit is equivalent via duality
to a single bad plaquette in the large-K limit. Instead, the
lowest mobile state is a flipped bond: the flipped bond can
hop in one direction, the direction perpendicular to the
bond, and its dispersion relation is the same as that in the
d � 1 case (22). These one-particle states can scatter off
each other, and because they hop unidirectionally, this
kind of scattering is very similar to 1D scattering. The
ordered state at small h is a condensation of bonds.

Direct experimental observation of the order-
parameter state of a superconducting grain is currently
possible only for isolated superconducting grains.
However, there are several experimental signatures of
the bond ordering predicted above, even though in the
ground state the system has no frustrating fluxes and
hence is uniform from the superconducting point of
view. The gapless fluctuations near the transition will
modify the specific heat and transport in the system:
transport will be attenuated near the critical point by
047003-4
scattering off the fluctuations, while specific heat will
show a peak. The true spin action in a p� ip super-
conducting array is more complicated and includes
long-ranged interactions between frustrated plaquettes
[4], but it has the same gauge symmetries as (2). If grain
orders could be measured at the array boundary, the
directionality of the predicted bond ordering would be
seen, and the Ising variables of each neighboring pair of
grains develop a symmetry-breaking correlation at the
transition.

An unresolved question is whether (2) is a free-fermion
model like 1D quantum Ising. We have not found addi-
tional conservation laws beyond ordinary symmetries and
the infinitely many Z2 laws described above. A solution of
this 2D quantum model would give further insight into
the physics of explicit four-point interactions.
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