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Bravais Quasilattices of Icosahedral Quasicrystals
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A classification of icosahedral quasicrystals based the mutual-local-derivability (MLD) concept is
performed. There are eighteen MLD classes within the reservation that the faces of the hyperatoms
(windows) are perpendicular to the two-, three-, or fivefold axes. Each MLD class has a representative
member to be called the Bravais quasilattice from which the structure of each member of the class is
derived by decorating it according to a local rule depending on the member.

DOI: 10.1103/PhysRevLett.93.045501

The discovery of a quasicrystal in 1984 has introduced
a new era in the study of crystallography [1]. It was found
soon that quasicrystals as well as the Penrose patterns can
be represented as sections of ‘“‘higher-dimensional crys-
tals” [2—4]. Later, Baake and his collaborators [5,6]
proposed a classification scheme of quasicrystals by
means of a new concept, namely, mutual local derivabil-
ity (MLD). The present author proposed in a previous
paper [7] an MLD classification of two-dimensional (2D)
quasicrystals. However, the theory is incomplete for oc-
tagonal quasicrystals on account of a special property of
the relevant 4D Bravais lattice. This prevents us from
applying the theory to icosahedral quasicrystals of P or
F type. The method is improved in this Letter, and
applied to an MLD classification of icosahedral quasi-
crystals. This provides us with a firm basis for modeling
structures of quasicrystals.

The quasicrystal has a long-range positional order with
a noncrystallographic point symmetry (for a review, see
Ref. [8]). The positions of atoms in it form a quasilattice
(QL), which is a quasiperiodic set of points. Generally, a
QL is given as a section of a hypercrystal through the
physical space, Epys, as illustrated in Fig. 1 for the case of
a 1D QL, namely, the Fibonacci lattice. The hypercrystal
is a periodic structure in a hyperspace, Epyp.., whose
dimension, D, is twice the dimension d of Eyy: D =
2d. Specifically, d = 3 and D = 6 for icosahedral QLs.
The hyperspace is divided into the parallel space £} and
its orthogonal complement, E | , the perp space with equal
dimension, i.e., d. E is a simple translate of the physical
space, and the translation vector combining E)j to Epypys is
called the phase. The hypercrystal is composed of hy-
peratoms (or “atomic surfaces’’) which only extend along
E | . More precisely, the extension of the hyperatom in E |
is given by an interval, a polygon or a polyhedron if d =
1, 2, or 3, respectively. QLs with different phases are not
always congruent geometrically although they are indis-
tinguishable macroscopically. They form a so-called lo-
cally isomorphic (LI) class [2]. Thus, every LI class of
QLs is specified by the relevant hypercrystal. Remember
that a phason shift, i.e., a small change of the phase, gives
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rise to disappearance of a part of the lattice points of a QL
and appearance of new lattice points.

The translational symmetry of a hypercrystal is speci-
fied by a Bravais hyperlattice L. A simple hypercrystal
has only one hyperatom per one unit cell of L. There exist
three types of Bravais hyperlattices with the icosahedral
symmetry, namely, primitive (Lp), face-centered (L),
and body-centered types (L;) [9], whose properties are
summarized in Ref. [10] and reproduced partially below;
relations among them are similar to those among the
three cubic Bravais lattices in 3D. We can assume Lp to
be a 6D simple hypercubic lattice, whose lattice vectors
are indexed by the standard basis vectors, g;, i =1 — 6.
Lpis divided into two equivalent sublattices being nested
with each other: Lp= LU (x; + Ly) with x;:=
[100000] (= &) [11]. Similarly, Ly is divided as L; =
LpU(x, + Lp) with x, :=1[111111] pointing a body-
centered site of Lp. Consequently, we may write

L, =Lpu(x, + LU+ LU+ L), (1)

with x5 := 1[111111]. That is, L, is the double (respec-
tively quadruple) lattice of Lp (respectively L). The
common 6D point group, Y, of the three icosahedral
hyperlattices acts separately onto the two subspaces, E|

FIG. 1. The Fibonacci lattice is obtained as a section of a 2D
hypercrystal but is displaced at the margin. The relevant 2D
“hyperlattice,” L,, is generated by the basis vectors, &; =
a(l, —7) and &, = a(r, 1) with 7:= (1 + /5)/2 being the
golden ratio. The hyperatoms are vertical bars, whose lengths
are equal to a(1 + 7).

© 2004 The American Physical Society 045501-1



VOLUME 93, NUMBER 4

PHYSICAL REVIEW

and £, as 3D point groups which are isomorphic with
the icosahedral point group, Y. Y, has three types of
symmetry axes, A, A, and 3, which refer, respectively, to
the five-, three- and twofold axes of an icosahedron. The
projections of *g; onto E| (respectively E ) form a full
set of the 12 vertex vectors of a regular icosahedron in E|
(respectively E ). It follows that E (respectively E ) is
maximally incommensurate with every icosahedral hy-
perlattice, £, and the projection, L (respectively L | ), of
L onto Ej (respectively E;) is a 6D Z module (an
additive group). The two modules, £ and £, has a
scaling symmetry as 7L = L and 7L, = L, pro-
vided that £ is L or L;, where 7:= (1 + /5)/2 is the
golden ratio and 7 [= (1 —+/5)/2 = —1/7] is its alge-
braic conjugate. Therefore, the two hyperlattices, L5 and
L, are left invariant against a hyperscaling transforma-
tion, T, which scales E) and E| by 7 and 7, respectively.
Of the four equivalent sublattices to which £; is divided
as given by Eq. (1), only the sublattice L is left invariant
against T but other three are permuted cyclically by T.
L p has also a hyperscaling symmetry but T (or 7) above
must be replaced by T3 (or 73). Incidentally, the 2D
version of T applies to the 2D hyperlattice, £,, in Fig. 1
because Te; = &, and Te, = &, + &,. The space group
(exactly, superspace group) of L acts onto Ejype, and
every lattice point of L is a full symmetry point with
the point symmetry Y,. For the case of the two hyper-
lattices, Lp and L, however, there are other types of full
symmetry points than their lattice points: a body-
centered site of Lp, for example, is so. The augmented
lattice of L is defined by the set, z, of all the full
symmetry points in Epy,e,. It can be shown that r=r,
for all the three cases, L = Lp, L and L;. It is essential
in our theory to distinguish the two lattices £ and I,
which are identical only for £; [12].

For the 2D hyperlattice, £,, we obtain L, = aZ[7]
with Z[7] :={p + g7| p, ¢ € Z} being a 2D Z module.
The 6D Z module £ of an icosahedral hyperlattice £
yields a similar 2D module, M, if it is projected onto a
symmetry axis of Y, in E; [4]. We shall call M the
projection module, which plays an important role in a
later argument. The three types of icosahedral hyper-
lattices and the three types of the symmetry axes yield
nine types of projection modules, which are denoted as
Py, Fyp, Fy, etc. Investigating the nine cases separately,
we can conclude that M assumes aZ[7°] for P, and P
but aZ[ 7] otherwise, where a is a constant depending on
the type of the projection module [13]. M is a submodule
of the extended module, !f\/l which is the relevant projec-
tion module of the augmented lattice £ (= £;). We may
write M = aZ[7], where & = a/2 for F and F, buta =
a for the remaining seven cases.

There are three types of symmetry-adapted poly-
hedrons as shown in Fig. 2, namely, a regular do-
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FIG. 2. Three types of symmetry-adapted polyhedrons.

decahedron, a regular icosahedron and a rhombic
triacontahedron. The faces of them are normal to the
symmetry axes of the types, A, A, and 3, respectively,
so that faces of different polyhedrons are never parallel.
The size parameter & of such a polyhedron is defined by
the distance between a pair of parallel faces. If hypera-
toms with the shape of such a polyhedron are located on
the lattice points of an icosahedral Bravais hyperlattice,
we obtain an important icosahedral hypercrystal (or the
relevant QL), whose space group is symmorphic and its
point group is Y. Varying &, we obtain a continuous
series of hypercrystals (or QLs), which form a species.
There are nine species corresponding to the nine types of
projection modules, and we may denote the former nine
by the same symbols as those for the latter. We shall
restrict the present MLD classification to hypercrystals
belonging to these species. An icosahedral QL has a set of
parallel quasilattice planes [4] (QLPs) so that all its
lattice points are located dividedly on them, the 2D
versions of which are quasilattice lines as shown in
Fig. 3. The arrangement of the QLPs defines a 1D QL,
the projection QL [4]. A QLP is called proper if it is
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FIG. 3. The two 2D octagonal QLs superimposed in this
figure are derived from a 4D hypercubic lattice. The lattice
points of each QL are located on the vertices of the network
distinguished by the line thickness. They are located dividedly
on vertical quasilattice lines: the arrangement of the quasilat-
tice lines of the thick QL produces a 1D QL shown as the array
of bars at the bottom. A phason shift easily makes the seventh
quasilattice line jump to the right as indicated by the dotted
lines. This figure mimics well various things realized in
icosahedral QLs.
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normal to a relevant symmetry axis to the species of the
QL. Also, a projection QL is called proper if so are the
relevant QLPs. From a thermodynamical reason, we can
restrict our consideration to the QLs (or hypercrystals)
satisfying the so-called the gluing condition (or, equiv-
alently, the closeness condition) [14], which demands that
lattice points (atoms) must not disappear under a phason
shift but only jump a finite distance. In fact, all the lattice
points on a proper QLP jump simultaneously to form a
new QLP (see Fig. 3). That is, a 2D or 3D QL satisfies the
gluing condition if and only if its proper projection QL
satisfies the gluing condition as a 1D QL. A hyperatom of
a 1D QL (or the relevant 2D hypercrystal), for example,
can be “glued” with another if the top end of the former
is on the same level as the bottom end of the latter.
Inspecting Fig. 1 we see that the Fibonacci lattice satisfies
the gluing condition. Generally, the gluing condition is
satisfied by a 2D or 3D QL if and only if the size
parameter ¢ of the hyperatom belongs to the relevant
projection module M. We will represent hereafter £ in
unit of the ““lattice constant” a of M, so that £ € Z[7] or
Z[73]. Bach hypercrystal in a single species is specified
by a positive number in the countable set Z[7] or Z[73].
Two QLs are MLD (mutually locally derivable) [5,6] if
and only if there exists a local rule such that the position
of each lattice point of one of them is determined by the
relevant local structure of the other and vice versa. For
example, the two 2D octagonal QLs in Fig. 3 are MLD,
and we can easily identify a local rule by which one of the
two is derived from the other. Exactly speaking, the MLD
relationship is a relationship between two LI classes
rather than two QLs, so that it is a relationship between
the relevant two hypercrystals. The set of all the hyper-
crystals with a common hyperlattice is divided into MLD
classes. MLD classifications were made quite recently for
low-dimensional QLs in Refs. [7,15]. We assume naturally
that two QLs being MLD have common local centers of
symmetries [5—7] as is the case for the two QLs in Fig. 3.
Then, the hyperlattices of the two hypercrystals coincide
or assume two sublattices of the relevant augmented
lattice as illustrated in Fig. 4. That is, two hypercrystals
can be MLD with each other in the coincident configura-
tion or the nesting configuration; the latter configuration

is possible only when L # L. Since two hypercrystals
belonging to different species are never MLD [7], the
problem is reduced to the MLD classification of hyper-
crystals belonging to each of the nine species.

A necessary and sufficient condition for two QLs (or
hypercrystals) to be MLD is that they satisfy the inter-
gluing condition: a jump, originating from a phason shift,
of a proper QLP of one QL always accompanies a similar
jump in the other (cf. Figs. 3 and 4). The marker in dashed
line in Fig. 4 shows that the 2D hypercrystals (a) and (b)
are glued with each other in the coincident configuration,
while they are glued with (c) in the nesting configuration.
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FIG. 4. In this figure are superimposed three 2D hyper-
crystals on the same 2D “hyperlattice,” £,, as in Fig. 1. The
three types of hyperatoms are vertical lines, whose lengths are
(a) 1 + 7 (thin); (b) 3 — 7 (thick); and (¢) two (dotted) in unit
of a = 1. The hyperatoms are located on the lattice points of
L, for the hypercrystals (a) and (b) but on the centers of square
unit cells for (c). The former two of the three hypercrystals are
in the coincident configuration, while they are in the nesting
configuration with the last.

The intergluing condition for two hypercrystals is formu-
lated generally as 1 & +1&' € M, where ¢ and & are the
size parameters of the two hyperatoms. Hereafter, we
need to discuss separately the two cases: @ = 1/2 and
a = 1 (with a = 1), the former of which applies to F, and
F, but the latter to the remaining seven cases. For a =
1/2 we obtain M = Z[7]/2, and & + & € Z[7]. This
condition is trivially satisfied, so that all the hypercrys-
tals of each of the two species form a single MLD class.
For this case, we can choose 1 € M as the representative
member of M. For @ = 1, however, the intergluing con-
dition is written as & + & € 2Z[7], so that £ and £’ need
to have a common “parity” with respect to Z[7]. M can
be divided into several residue classes with respect to
parities [15]; each residue class is an infinite set of num-
bers of the form & + 2v with £ being a representative of
the class and v € Z[7]. The number of the residue classes
is four (respectively two) if M = Z[7] (respectively
M = Z[7%]), and the representatives of the four (respec-
tively two) can be chosentobe 2,1, 7, and 72 (=1 + 7)
(respectively two and one) [16]. Each residue class yields
one MLD class for each of the three species, P, P, and

TABLE I. The 18 MLD classes are grouped into four. The
number of MLD classes in each group is equal to the product of
the number of species listed in the fourth column and that of
the residue classes whose representatives, &, are listed in the
fiftth column. However, the three odd residue classes being
braced must be counted once in total.

Case M M Species Odd ¢ Even ¢ Number
I Z[7] §Z[7]  Fa, Fy 1 2X1=2
0 Z[7] Z[7] Fs, Iz, In, Is {7, 72} 2 4Xx2=38
nr Z[r] Z[r] Ps L2 2 1x4=4
IV Z[7’] Z[7] Py, Py 1 2 2x2=4
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Py, and the number of the MLD classes derived from £p
is eight in total. However, the situation is different for the
four species, Fs, I, I, and Is, because the two hyper-
lattices, L and L, have a hyperscaling symmetry with
the transformation, 7 [16]. As a consequence, the relevant
three MLD classes for the odd residue classes are merged
into a single scaling MLD class [7,15], and the number of
the MLD classes derived from L (respectively L;) is
four (respectively six) in total. Thus, there are altogether
18 MLD classes of icosahedral QLs. This completes an
MLD classification of icosahedral QLs, which is summa-
rized in Table I. A key point of the present formalism is
that two hypercrystals can be MLD with each other in the

nesting configuration if £ # I

A representative member of each MLD class of icosa-
hedral QLs is chosen to be the one with hyperatoms
whose size parameter ¢ is equal to a number listed in
Table 1. We may call it a Bravais quasilattice because the
structure of every quasicrystal being MLD with it is, by
the very definition of the MLD relationship, represented
as its decoration with a local rule. For example, the union
of the two QLs in Fig. 3 can be regarded as a 2D “qua-
sicrystal” derived from the Bravais quasilattice (the thick
one). Each type of the decorated atoms of icosahedral
quasicrystals considered here has its own hyperatom,
whose faces are parallel to those of the relevant
symmetry-adapted polyhedron [8]. This together with
the self-guing condition are restrictions, though not seri-
ous, of the present theory. From the group-theoretical
point of view, it is the Bravais hyperlattice that is the
counterpart of the Bravais QL in the classical crystallog-
raphy, and the Bravais QL is a new concept with no
classical counterparts. It has been shown by this Letter
that the three icosahedral Bravais hyperlattices listed in
Ref. [9] are divided into 18 MLD classes. Thus, the MLD
classification of quasicrystals is more refined than the
conventional classification based on the Bravais hyper-
lattices. We expect that the present work will contribute
greatly to building new or better models for known qua-
sicrystals and new quasicrystals to be found in the future.

Finally, we add MLD classifications of several icosa-
hedral tilings among those listed in Ref. [17]. The tilings
T®) 742 and T*D in the notation of this reference
belong to Ps(2), Fx(2), and I5(1), respectively, while
T'®) and T% belong both to F,(1). However, T ?F) is
out of our classification scheme because it is composed of
subquasilattices belonging to different species; more pre-
cisely, one subquasilattice belongs to F,(1) but the re-
maining two to Fs(1). On the other hand, the two famous
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models of icosahedral quasicrystals, namely, Yamomoto
and Katz-Gratias models, belong both to Fs(2).
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