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Generalizing the Wavelet-Based Multifractal Formalism to Random Vector Fields:
Application to Three-Dimensional Turbulence Velocity and Vorticity Data
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We use singular value decomposition techniques to generalize the wavelet transform modulus
maxima method to the multifractal analysis of vector-valued random fields. The method is calibrated
on synthetic multifractal 2D vector measures and monofractal 3D fractional Brownian vector fields. We
report the results of some application to the velocity and vorticity fields issued from 3D isotropic
turbulence simulations. This study reveals the existence of an intimate relationship between the
singularity spectra of these two vector fields which are found significantly more intermittent than
previously estimated from longitudinal and transverse velocity increment statistics.
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The multifractal formalism was introduced in the con-
text of fully developed turbulence data analysis and mod-
eling to account for the experimental observation of some
deviation to Kolmogorov theory (K41) of homogenous
and isotropic turbulence [1]. The predictions of various
multiplicative cascade models, including the weighted
curdling (binomial) model proposed by Mandelbrot [2],
were tested using box-counting (BC) estimates of the so-
called f��� singularity spectrum of the dissipation field
[3]. Alternatively, the intermittent nature of the velocity
fluctuations were investigated via the computation of the
D�h� singularity spectrum using the structure function
(SF) method [4]. Unfortunately, both types of studies
suffered from severe insufficiencies. On the one hand,
they were mostly limited by one point probe measure-
ments to the analysis of one (longitudinal) velocity com-
ponent and to some 1D surrogate approximation of the
dissipation [5]. On the other hand, both the BC and SF
methodologies have intrinsic limitations and fail to
fully characterize the corresponding singularity spec-
trum since only the strongest singularities are a priori
amenable to these techniques [6]. In the early 1990s, a
wavelet-based statistical approach was proposed as a
unified multifractal description of singular measures
and multiaffine functions [6]. Applications of the so-
called wavelet transform modulus maxima (WTMM)
method have already provided insight into a wide variety
of problems, e.g., fully developed turbulence, econophy-
sics, meteorology, physiology and DNA sequences [7,8].
Later on, the WTMM method was generalized to 2D for
multifractal analysis of rough surfaces [9], with very
promising results in the context of the geophysical study
of the intermittent nature of satellite images of the cloud
structure [10,11] and the medical assist in the diagnosis in
digitized mammograms [11,12]. Recently the WTMM
method has been further extended to 3D analysis and
applied to dissipation and enstrophy 3D numerical data
issue from isotropic turbulence direct numerical simula-
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tions (DNS) [13,14]. Thus far, the multifractal description
has been mainly devoted to scalar measures and func-
tions. In the spirit of a preliminary theoretical study of
self-similar vector-valued measures by Falconer and
O’Neil [15], our objective here is to generalize the
WTMM method to vector-valued random fields with the
specific goal to achieve a comparative 3D vectorial multi-
fractal analysis of DNS velocity and vorticity fields.

Let us note V�x � �x1; x2; . . . ; xd��, a vector field with
square integrable scalar components Vj�x�, j �
1; 2; . . . ; d. Along the line of the 3D WTMM method
[13,14], let us define d wavelets  i�x� � @
�x�=@xi for
i � 1; 2; . . . ; d respectively, where 
�x� is a scalar
smoothing function well localized around jxj � 0. The
wavelet transform (WT) of V at point b and scale a is the
following tensor [14]:
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where

T i�Vj��b; a� � a�d
Z
ddr i�a�1�r� b��Vj�r�: (2)

In order to characterize the local Hölder regularity of V,
one needs to find the direction that locally corresponds to
the maximum amplitude variation of V. This can be
obtained from the singular value decomposition (SVD)
[16] of the matrix �T i�Vj�� [Eq. (1)]:

T  �V� � G�HT; (3)

where G and H are orthogonal matrices (GTG � HTH �
Id) and � � diag��1; �2; . . . ; �d� with �i 	 0, for 1 

i 
 d. The columns of G and H are referred to as the
left and right singular vectors, and the singular values of
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FIG. 1. First construction steps of a singular vector-valued
measure supported by the unit square. The norms of the four
similitudes Si are p1 � p4 � 1=2, p2 � 2, and p3 � 1 [15].
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T �V� are the non-negative square roots �i of the d
eigenvalues of T �V�TT �V�. Note that this decomposi-
tion is unique, up to some permutation of the �i’s. The
direction of the largest amplitude variation of V, at point
b and scale a, is thus given by the eigenvector G��b; a�
associated to the spectral radius ��b; a� � maxj�j�b; a�.
One is thus led to the analysis of the vector field
T ;��V��b; a� � ��b; a�G��b; a�. Following the WTMM
analysis of scalar fields [9,13,14], let us define, at a given
scale a, the WTMM as the position b where the modulus
M �V��b;a�� jT ;��V��b;a�j���b;a� is locally maxi-
mum along the direction of G��b; a�. These WTMM lie
on connected �d� 1� hypersurfaces called maxima hy-
persurfaces [see Figs. 2(b) and 2(c)]. In theory, at each
scale a, one needs only to record the position of the local
maxima of M (WTMMM) along the maxima hyper-
surfaces together with the value of M �V� and the di-
rection of G�. These WTMMM are disposed along
connected curves across scales called maxima lines liv-
ing in a �d� 1� space �x; a�. The WT skeleton is then
defined as the set of maxima lines that converge to the
�x1; x2; . . . ; xd� hyperplane in the limit a! 0� [see
Fig. 2(d)]. The local Hölder regularity of V is estimated
from the power-law behavior M �V��Lr0�a��
 ah�r0�

along the maxima line Lr0�a� pointing to the point r0
in the limit a! 0�, provided the Hölder exponent h�r0�
is smaller than the number n of zero moments of the
analyzing wavelet  [17]. As for scalar fields [6,9,13], the
tensorial WTMM method consists in defining the parti-
tion functions:

Z �q; a� �
X

L2L�a�

�M �V��r; a��q 
 a��q�; (4)

where q 2 R and L�a� is the set of maxima lines that
exist at scale a in the WT skeleton. Then by Legendre
transforming ��q�, one gets the singularity spectrum
D�h� � minq�qh� ��q��, defined as the Hausdorff di-
mension of the set of points r where h�r� � h.
Alternatively, one can compute the mean quantities:

h�q; a� �
X

L2L�a�

lnjM �V��r; a�jW �V��q;L; a�;

D�q; a� �
X

L2L�a�

W �V��q;L; a� ln�W �V��q;L; a��;
(5)

where W �V��q;L; a� � �M �V��r; a��q=Z�q; a� is a
Boltzmann weight computed from the WT skeleton.
From the scaling behavior of these quantities, one can
extract h�q� � lima!0�h�q; a�= lna and D�q� �
lima!0�D�q; a�= lna and therefore the D�h� spectrum.

As a test application of this extension of the WTMM
method to the vector situation, let us consider the self-
similar 2D vector measures supported by the unit square
defined in Ref. [15]. As sketched in Fig. 1, from step n to
step n� 1, each square is divided into four identical
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subsquares and for each of these subsquares, one defines
a similitude Si that transforms the vector V�n� at step n
into the vector V�n�1�

i for the subsquare i at step n� 1.
The �-additivity property of positive scalar measures is
now replaced by the vectorial additivity condition V�n� �P4
i�1 V

�n�1�
i . A straightforward calculation yields the fol-

lowing analytical expression for the partition function
scaling exponents ��q� [Eq. (4)]:

��q� � �log2�p
q
1 � pq2 � pq3 � pq4� � q; (6)

where pi (i � 1 to 4) are the norms of the similitudes Si.
Note that this formula is identical to the theoretical
spectrum of a nonconservative scalar multinomial mea-
sure distributed on the unit square with the weights pi
[13,14]. Indeed, if the construction process in Fig. 1 is
conservative from a vectorial point of view, it does not
conserve the norm of the measure:

P4
i�1 pi � 4> 1. From

Legendre transforming Eq. (6), one gets a D�h� singular-
ity spectrum with a characteristic multifractal single-
humped shape [see Fig. 3(d)] supported by the interval
�hmin; hmax� � ��1 � log2�maxipi�;�1 � log2�minipi��
and whose maximum DF � ���0� � 2 is the signature
that the considered vector-valued measure is almost
everywhere singular on the unit square.

In Fig. 2 are illustrated the main steps of our tensorial
WT methodology when applied to 16 �1024�2 realizations
of a random generalization of the vectorial multiplicative
construction process described in Fig. 1. Focusing on the
central �128�2 subsquare, we show the singular vector-
valued measure [Fig. 2(a)] and the corresponding
WTMM chains computed with a first-order analyzing
wavelet at two different scales [Figs. 2(b) and 2(c)]. On
these maxima chains, the black dots correspond to the
location of the WTMMM at these scales. The size of the
arrows that originate from each black dot is proportional
to the spectral radius ��b; a� and its direction is along the
eigenvector G��b; a�. When linking these WTMMM
across scales, one gets the set of maxima lines shown in
Fig. 2(d) as defining the WT skeleton. In Fig. 3 are
reported the results of the computation of the multifractal
spectra (annealed averaging). As shown in Fig. 3(a),
Z�q; a� [Eq. (4)] display nice scaling behavior over four
octaves (when plotted versus a in a logarithmic represen-
tation), for q 2 ��2; 4� for which statistical convergence
044501-2



FIG. 3. Multifractal analysis of the 2D vector-valued random
measure field using the 2D tensorial WTMM method (�) and
BC techniques (�). (a) log2Z�q; a� vs log2a; (b) h�q; a� vs
log2a; the solid lines correspond to linear regression fits over
�W & a & 24�W . (c) ��q� vs q; the solid line corresponds to
the theoretical prediction [Eq. (6)]. (d) D�h� vs h; the solid line
is the Legendre transform of Eq. (6).

FIG. 2. 2D WT analysis of the 2D vector-valued self-similar
measure shown in Fig. 1 but with systematic random permuta-
tion of the Si.  is a first-order analyzing wavelet [
�r� is the
Gaussian]. (a) 32 gray-scale coding of the central �128�2

portion of the original �1024�2 field. In (b) a � 22�W and
(c) a � 23�W , are shown the maxima chains; from the local
maxima (WTMMM) of M along these chains (�) originates
a black arrow whose length is proportional to M and direc-
tion is along T ;��V�. (d) WT skeleton obtained by linking the
WTMMM across scales. �W � 7 (pixels) is the characteristic
size of  at the smallest resolved scale.
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turns out to be achieved. A linear regression fit of the data
yields the nonlinear ��q� spectrum shown in Fig. 3(c), in
remarkable agreement with the theoretical spectrum
[Eq. (6)]. This multifractal diagnosis is confirmed in
Fig. 3(b), where the slope of h�q; a� [Eq. (5)] versus
log2a clearly depends on q. From the estimate of h�q�
and D�q� [Eq. (5)], one gets the single-humped D�h�
curve shown in Fig. 3(d) which matches perfectly the
theoretical D�h� spectrum. In Fig. 3, we have reported for
comparison, the results obtained when using a box-
counting (BC) algorithm adapted to the multifractal
analysis of singular vector-valued measures [14,15,18].
There is no doubt that BC provides much poorer results,
especially concerning the estimates of ��q�, h�q�, and
D�q� for negative q values. This deficiency mainly results
from the fact that the vectorial resultant may be very
small whereas the norms of the vector measures in the
sub-boxes are not small at all. The results reported in
Fig. 3 bring the demonstration that our tensorial WTMM
methodology paves the way from multifractal analysis of
singular scalar measures to singular vector measures.

In Fig. 4 are reported the results of the application of
our tensorial WTMM method to isotropic turbulence
DNS data obtained by Lévêque. This comparative 3D
multifractal analysis of the velocity (v) and vorticity
(!) fields corresponds to some averaging over 18 snapshots
of �256�3 DNS run at R� � 140. As shown in Figs. 4(a)
and 4(b), both the Z�q; a� and h�q; a� partition functions
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display rather nice scaling properties for q � �4 to 6,
except at small scales (a & 21:5�W) where some curvature
is observed in the log-log plots likely induced by dissi-
pation effects [1,19]. Linear regression fit of the data
[Fig. 4(a)] in the range 21:5�W 
 a 
 23:9�W yields the
nonlinear �v�q� and �!�q� spectra shown in Fig. 4(c), the
hallmark of multifractality. For the vorticity field, �!�q�
is a decreasing function similar to the one obtained for
the singular vector-valued measure in Fig. 3(c); hence
h�q� �� @��q�=@q�< 0 and the support of the D�h� sin-
gularity spectrum expands over negative h values as
shown in Fig. 4(d). In contrast �v�q� is an increasing
function which implies that h�q�> 0 as the signature
that v is a continuous function. Let us point out that the
so-obtained �v�q� curve significantly departs from the
linear behavior obtained for 18 �256�3 realizations of
vector-valued fractional Brownian motions B1=3 of index
H � 1=3, in good agreement with the theoretical spec-
trum �B1=3�q� � q=3� 3. But even more remarkable, the
results reported in Fig. 4(b) for h�q; a� suggest, up to
statistical uncertainty, the validity of the relationship
h!�q� � hv�q� � 1. Actually, as shown in Fig. 4(d),
D!�h� andDv�h� curves are likely to coincide after trans-
lating the later by one unit on the left. This is to our
knowledge the first numerical evidence that the singular-
ity spectra of v and ! might be so intimately related:
Dv�h� 1� � D!�h� (a result that could have been
guessed intuitively by noticing that ! � r ^ v involves
first-order derivatives only). Finally, let us note that, for
both fields, the ��q� and D�h� data are quite well fitted by
log-normal parabolic spectra [19]:
044501-3



FIG. 4. Multifractal analysis of Lévêque DNS velocity (�)
and vorticity (�) fields (d � 3, 18 snapshots) using the ten-
sorial 3D WTMM method; the symbols (�) correspond to a
similar analysis of vector-valued fractional Brownian motions,
BH�1=3. (a) log2Z�q; a� vs log2a; (b) h!�q; a� vs log2a and
hv�q; a� � log2a vs log2a; the solid and dashed lines correspond
to linear regression fits over 21:5�W & a & 23:9�W . (c) �v�q�,
�!�q�, and �B1=3 �q� vs q; (d) Dv�h� 1�, D!�h� vs h; the dashed
lines correspond to log-normal regression fits with the parame-
ter values Cv

2 � 0:049 and C!2 � 0:055; the dotted line is the
experimental singularity spectrum (C!vk2 � 0:025) for 1D lon-
gitudinal velocity increments [19].
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��q� � �C0 � C1q� C2q
2=2;

D�h� � C0 � �h� C1�
2=2C2:

(7)

Both fields are found singular almost everywhere: Cv
0 �

��v�q� 0� �Dv�q� 0� � 3:02� 0:02 and C!0 � 3:01�
0:02. The most frequent Hölder exponent h�q � 0� �
�C1 [corresponding to the maximum of D�h�] takes the
value �Cv

1 ’ �C!1 � 1 � 0:34� 0:02. Indeed, this esti-
mate is much closer to the K41 prediction h � 1=3 [1]
than previous experimental measurements (h �
0:39� 0:02) based on the analysis of longitudinal veloc-
ity fluctuations [19]. Consistent estimates are obtained for
C2 [which characterizes the width of D�h�]: Cv

2 �
0:049� 0:003 and C!2 � 0:055� 0:004. Note that these
values are much larger than the experimental estimate
C2 � 0:025� 0:003 derived for 1D longitudinal velocity
increment statistics [19]. Actually they are comparable to
the value C2 � 0:040 extracted from experimental trans-
verse velocity increments [19(b)].

To conclude, we have generalized the WTMM method
to vector-valued random fields. Preliminary applications
to DNS turbulence data have revealed the existence of an
intimate relationship between the velocity and vorticity
3D statistics that turn out to be significantly more inter-
mittent than previously estimated from 1D longitudinal
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velocity increments statistics. This new methodology
looks very promising to many extents. Thanks to the
SVD, one can focus on fluctuations that are locally con-
fined in 2D (mini�i � 0) or in 1D (the two smallest�i are
zero) and then simultaneously proceed to a multifractal
and structural analysis of turbulent flows. The investiga-
tion along this line of vorticity sheets and vorticity fila-
ments in DNS is in current progress.
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