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We study the asymmetric simple exclusion process with open boundaries and derive the exact form of
the joint probability function for the occupation number and the current through the system. We further
consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the
density fluctuations have a discontinuity at the continuous phase transition, while the current fluctua-
tions are continuous. The derivations are performed by using the standard operator algebraic approach
and by the introduction of new operators satisfying a modified version of the original algebra.
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FIG. 1. Phase diagram of the one dimensional exclusion
process. The dashed line indicates the first order transition
line, while the dash-dotted lines indicate the continuous tran-
sition lines.
Because of the lack of a general theory of nonequilib-
rium steady states, a lot of the research in this area
focuses on the study of simple models. Of special interest
are stochastic interacting particle models [1,2], and one
hopes that many of the interesting qualitative character-
istics of these simplified models are generic for a larger
class of systems. A system that has received a lot of the
attention is the partially asymmetric simple exclusion
process (PASEP). First, this model is nontrivial, display-
ing steady-state phase transitions, yet simple enough to be
integrable [3–6], and further it maps onto certain growth
models [7], it models traffic flow [8], and it is believed to
describe the large scale dynamics of the noisy Burgers
equation [9–11] and the Kardar-Parisi-Zhang equation
[11,12]. There has been much progress in the analytical
treatment of the PASEP, giving rise to a host of exact
results describing its steady state properties [3–6,13–16].
At the heart of the distinction between nonequilibrium
and equilibrium systems lies the ability of nonequilib-
rium systems to carry currents. So far, the results con-
cerning the currents in different special cases of the
PASEP [13,14,17,18] are mainly for systems with periodic
boundaries or infinite geometries with special initial
conditions. In this Letter we consider a finite system
with open boundaries but specialize the treatment to the
one dimensional asymmetric simple exclusion process
(ASEP). It consists of a lattice of size L, with site label
l running from left to right. Every site on the lattice can
be occupied by no more than one particle. Given that the
right neighboring site of an occupied site is empty, the
occupying particle will jump to the empty site with a
rate 1. If the first site on the lattice is unoccupied, particles
are injected at this boundary with rate �. Further given
that we have a particle at the last site of the lattice, it is
ejected with the probability rate �. No further transitions
are allowed. We here limit our considerations to the case
where we can view the boundary rates as deriving from
particle reservoirs. We therefore take 0<� � �left < 1
and 0<� � 1� �right < 1, where �left and �right are the
particle densities of the reservoirs. This model has been
exactly solved [4] (see Fig. 1 for the phase diagram) in the
0031-9007=04=93(4)=040602(4)$22.50 
sense that the steady-state probability of any given micro-
scopic configuration can (in principle) be calculated by
applying a given set of algebraic rules. Even so, these
calculations quickly become very cumbersome as the
system size is increased.

Thus we here wish to extract general information about
the system directly from the algebraic rules, without
explicitly calculating the microscopic weights. Since the
algebraic rules are instrumental to our later development
we here give a very brief recap of their definition. The
starting point is to represent any microscopic configura-
tions in terms of a string of noncommuting operators D
and E, corresponding to a particle and a hole, respec-
tively. It can then be shown that the steady-state proba-
bility distribution can be written in terms of this operator
string and two vectors, h�j and j�i, according to

Pss�fnlg	 � �Z��
L 	�1h�jX�n1	X�n2	 
 
 
X�nL	j�i: (1)
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Here the operator X�nl	 equals D if there is a particle at
site l (nl � 1), and E if site l is unoccupied (nl � 0). The
configuration independent factor Z��

L � h�j�D�E	Lj�i
ensures the proper normalization. For (1) to hold true, the
operators and vectors must further satisfy the algebraic
rules

C�
def

DE � E�D; h�jE �
1

�
h�j; Dj�i �

1

�
j�i;

(2)

where we have implicitly assumed that the normalizations
of the vectors j�i and h�j are such that h�j�i � 1. The
algebraic rules (2) are now all that is needed to calculate
P��
ss �fnlg	, resulting in a polynomial of degree L in 1=�

and 1=�.
In moving from a microscopic to a macroscopic view

of the system we here concentrate on the average density
and current throughout the bulk. We derive the exact joint
probability function for the average bulk current and
density for any system size. First we define the total
activity within the system as the number of bulk bonds
that can facilitate a transition of a particle in the imme-
diate future, i.e., the total effective bulk transition rate.
The bulk current is then defined as the activity divided by
the system size. For any given state the activity equals the
number of pairs of neighboring sites that has a particle to
the left and a hole to the right. To get a handle on the
activity, J, of a microscopic configuration of N particles
we choose to represent such a configuration by a sequence
of J objects of the form DpjEhj , possibly padded with E’s
to the left and D’s to the right. Doing this we can write
any microscopic steady state measure as

Pss�fnlg	 � �Z��
L 	�1h�jEh0�Dp1Eh1	 
 
 
 �DpJEhJ 	Dp0 j�i;

by appropriately choosing the numbers fpj; hjg and J. It
further follows that the above expression is unique if
h0; p0 � 0 and the rest satisfy hj; pj � 1. We can now,
in principle, calculate the joint probability distribution
for N and J by summing the above over all hj’s and pj’s
consistent with a specific number of particles (

PJ
j�0 pj �

N) and a given system size (N �
PJ

j�0 hj � L). Choosing
to enforce these constraints with contour-integral repre-
sentations of the Kronecker delta, the expression for the
joint particle-activity probability function can be written
as

P��
L �N; J	 �

��
ZL

I
Cz;C�z

dzd�z

�2�{	2
1

zN�1 �zL�N�1

1

�z� �	��z� �	

 h�j

"XN
p�1

�zD	p
XL�N

h�1

� �zE	h
#
J

j�i: (3)

Here Cz (C�z) is a directed contour that encircles the pole
at the origin of the complex z (�z) plane once in the
positive direction, with jzj<� (j�zj<�). The first step
toward explicitly calculating (3) is through considering
the properties of the operators

P
p�zD	p and

P
h��zE	h.
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Surprisingly it turns out [19] that a slight modification of
the above operators

D0 �
def
�1� �z� �z	�D

XN�1

h�0

�zD	h;

E0 �
def
�1� �z� �z	�E

XL�N�1

p�0

��zE	p;

satisfy the ‘‘relaxed’’ operator algebra

D0E0 � D0 �E0 �O�zN; �zL�N	:

The relaxed eigenvectors and eigenvalues are further
given by

D0j�i � j�i
1

�0
�O�zN	; h�jE0 �

1

�0
h�j �O��zL�N	;

with

�0 �
def �� �z

1� �z� �z	
; �0 �

def �� z
1� �z� �z	

:

We can now rewrite (3) in terms of the primed operators
and start using the relaxed operator algebra to transform
the expression. The result of any such manipulation would
be the same, up to terms of order zN and �zL�N , as if the
operator algebra would have been exact. The extra terms
have no effect under the contour integral in (3) since the
poles at the origins are both of order equal or lower than
N and L� N. (The case for J � 0 is trivial.) Thus, using
the relaxed algebra to perform any manipulation within
(3) is equivalent to using an exact algebra. Therefore we
can write

P��
L �N; J	 �

��

Z��
L

I
CzC�z

dzd�z

�2�{	2
1

zN�1�J �zL�N�1�J


Z�0�0

J

�z� �	��z� �	�1� �z� �z	�2J
: (4)

This expression is the main result of this Letter, and since
all quantities in it are known exactly, it yields both the
exact finite system size form of P��

L �N; J	, as well as
the asymptotic form in the large system size limit. By
first calculating the generating functional G��	 �P

1
��0 �

LZ��
L [19] (which has recently been derived in a

different manner in [20]), the above further yields a
double contour integral expression for the generating
functional of N and J [19]. Below we present exact and
asymptotic results for P��

L �N; J	.
Finite systems.—The integral in (4) is easily calculated

with the help Cauchy’s integral theorem. All we need to
do is to calculate the coefficient of the term proportional
to �z�z	�1 in the Laurent-series expansion of the integrand
in (4). For J � 0 we have Z�0�0

J � 1 and thus

P��
L �N; 0	 �

1

Z��
L

�1=�	N�1=�	L�N;

which is obviously correct since the inactive state must
have L� N empty sites followed by N filled sites.
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For J � 1 we use the exact form of the normalization function [4]

Z��
L �

XL
l�1

AL;l

Xl
k�0

1

�k�l�k ; AL;l �
l�2L� l� 1	!

L!�L� l	!

to write

P��
L �N; J	 �

��

Z��
L

XJ
j�1

AJ;j

Xj
k�0

XL�N�J

c�0

XN�J

d�0

Gk;c��	Gj�k;d��	H2J�j;L�N�J�c;N�J�d; (5)
with

G�
k;c �

� k� c

c

�
1

�c�k�1
;

HK;d;e �

�K � 1� d� e

d� e

��d� e

e

�
:

Through the above we now have the exact form of the
sought-after joint probability function for any system
size. The form is illustrated in Fig. 2.

Thermodynamic limit.—We here return to (4). Using
the asymptotic form of the normalizing function given in
[4], we perform a steepest-descent calculation to get the
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FIG. 2 (color online). Each row contains a surface and a
contour plot of the exact probability distribution for the values
of � and � indicated, and with � � N=L and j � J=L. The first
three rows illustrate the behavior of the probability distribution
as the system goes along the line of � � � through the critical
point at � � � � 0:5, while the last three graphs illustrate the
behavior as the system goes through the first order transition at
� � � � 0:25. Overlaid in the contour plots (dashed line) is
the curve j � ��1� �	 which defines the set of possible
asymptotic average values of � and j throughout the system’s
different phases (not at the first order transition line). The
system size is L � 40.
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asymptotic results. We consider the different phases indi-
vidually. Because of the particle-hole symmetry
P��
L �N; J	 � P� �

L �L� N; J	 it is necessary to explicitly
consider only the case �<�.

First turning to the maximal-current phase we con-
sider (4) and drop all prefactors that are independent of N
and J (this is done throughout) to write

P��
L �N; J	�

4J

J3=2

I
Cz;C�z

dzd�z

�2�{	2
1

zN�J�1 �zL�N�J�1


1

�1� �z� �z	�2J�1


1

�2�� 1� z� �z	2�2�� 1� �z� �z	�2
:

The asymptotic behavior of these integrals is, in prin-
ciple, straightforward to calculate. In practice though, it
turns out to be quite cumbersome since one has to deter-
mine which of the saddle points and lower order poles
give the dominant contributions. We can shortcut this
through considering only the asymptotic form in some
finite region around the peak of the distribution. From [4]
we know that the average density and current is � and �
independent. Thus, the lower order poles cannot dictate
the asymptotic behavior around the peak value of the
probability distribution, and instead this must be set by
the saddle points

z� � �� j; �z� � 1� �� j;

� �N=L; j � J=L:

A saddle-point approximation thus results in
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FIG. 3 (color online). The two rows display a surface and a
contour plot of the leading behavior of the asymptotic proba-
bility distribution. The calculations were performed at the
injection and ejection rates indicated and at a system of size
L � 40 (to make the result comparable to Fig. 2).
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P��
L ��; j	 �

�
1

j2j��� j	��j�1� �� j	1���j

�
L
; (6)

where we for simplicity have dropped all the subdominant
prefactors. Even though the extent of the region of valid-
ity of (6) is unknown, it should be pointed out that the
size of this region is finite (as long as the system is away
from any phase boundaries) and independent of system
size. In the first row of Fig. 3 we show the resulting
dominating asymptotic plots.

Now turning to the low-current, low-density, phase we
have
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P��
L ��; j	�

I
Cz;C�z

dzd�z

�2�{	2
1

zN�J�1 �zL�N�J�1


2�� 1� z� �z
�� �� �z� �z	

1

��� �z	J�1�1�z��	J�1 :

The same arguments as applied in the maximal-current-
phase now give us the asymptotic probability distribution
around the peak. Again it is the saddle points

z� �
�� j
�

�1� �	; �z� �
1� �� j
1� �

�

that dominate. The resulting dominant form is
P��
L ��; j	 �

�
���1� �	1��

�1���1� �	�
1

j2j��� j	��j�1� �� j	1���j

�
L
: (7)
The above result is directly transferable to the high-
density phase through the use of the particle hole sym-
metry mentioned above. A realization of the asymptoti-
cally dominating part in the low-density phase is shown
in the second row of Fig. 3.

It is clear from the asymptotic forms that the probabil-
ity distribution is non-Gaussian in all phases. This is
consistent with the view that long-range correlations are
a generic feature of nonequilibrium systems with conser-
vative dynamics [21]. As the continuum transition is
passed, the asymptotic forms (6) and (7) indicate that
there will be a finite jump in the connected density-
density correlator. Comparing this to equilibrium
systems, these transitions correspond to second order
transitions.

In conclusion we note that it would be very interesting
to examine if the same ‘‘trick’’ of introducing a relaxed
algebra could somehow be applied to the PASEP, espe-
cially since this model interpolates between an equilib-
rium and a nonequilibrium steady state. It would further
be interesting to derive the full asymptotic form of the
probability distribution since sufficiently close to a phase
transition, any finite system will reach a point at which
the region of validity of the above asymptotic forms
shrink to the size of the typical fluctuations. In this region
the system crosses over to a situation where the asymp-
totic fluctuations are governed by the tails excluded in the
above development.
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