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Evidence for Entangled States of Two Coupled Flux Qubits
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We have studied the low-frequency magnetic susceptibility of two inductively coupled flux qubits
using the impedance measurement technique (IMT), through their influence on the resonant properties
of a weakly coupled high-quality tank circuit. In a single qubit, an IMT dip in the tank’s current-voltage
phase angle at the level anticrossing yields the amplitude of coherent flux tunneling. For two qubits, the
difference (IMT deficit) between the sum of single-qubit dips and the dip amplitude when both qubits
are at degeneracy shows that the system is in a mixture of entangled states (a necessary condition for
entanglement). The dependence on temperature and relative bias between the qubits allows one to
determine all the parameters of the effective Hamiltonian and equilibrium density matrix, and confirms
the formation of entangled eigenstates.
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While its exact role in the power of quantum computers
can still be debated, there is no doubt that entanglement is
a key feature of quantum registers, absent in their classi-
cal counterparts [1]. From the point of view of scalability,
implementing quantum registers as integrated circuits is
attractive. However, demonstrating entanglement in
macroscopic solid-state systems remains a daunting task,
even after the observation of quantum coherence in many
types of superconducting qubits [2–6] and also entangle-
ment in charge [7] and current-biased Josephson-
junction [8] qubits, using pulse and spectroscopic
techniques, respectively. In this Letter we investigate
two coupled three-junction flux qubits [9,10] using a
different method, providing a simple criterion for eigen-
state entanglement, by studying the latter’s influence on
the two-qubit magnetic susceptibility.

The impedance measurement technique (IMT) [11]
relies on monitoring the current and voltage in a high-
quality, low-frequency resonant tank circuit inductively
coupled to the qubit. In various modifications, this
method was applied to map the Josephson potential pro-
file [12], and to observe Landau-Zener transitions [13]
and Rabi oscillations [14] in a three-junction flux qubit.
Because of the tank’s weak coupling to the qubit and high
quality factor, decoherence times can be as high as
2:5 �s [14]. Note that the IMT approach requires a small
decoherence rate compared to only the tunneling ampli-
tudes (0:5� 1 GHz), not the tank frequency (10�
20 MHz). This Letter generalizes to two qubits an IMT
study of coherent tunneling [15]. The tank is fed a small-
amplitude ac signal; its effective impedance, and there-
fore the current-voltage phase angle, are sensitive to the
qubit susceptibility �. For, say, one qubit at temperature
0031-9007=04=93(3)=037003(4)$22.50 
T � 0, � / @2
E�, the curvature of the ground-state en-
ergy E� vs external flux
 [a different expression for � is
used in Eq. (4) below]. Thus, the level anticrossing due to
flux tunneling is revealed by a large peak in j�j.

Our system of two flux qubits inductively coupled to
each other and to the tank is shown in Fig. 1. The qubits
were fabricated out of aluminum by conventional shadow
evaporation, nominally 1 �m apart, at the center of a
niobium pickup coil. The area of each qubit was 80 �m2,
with self-inductance La=b � 39 pH; the two biggest junc-
tions in each qubit had critical current �400 nA and
Coulomb energy e2=2Ch � 3:2 GHz (for the third junc-
tion, these values are 10%� 20% smaller and larger,
respectively). The mutual inductance between the qubits
Mab � 2:7 pH was estimated numerically from the
electron micrograph. The Nb coil was fabricated using
e-beam lithography and has an inductance LT � 130 nH.
Together with an external capacitor of CT � 470 pF, it
forms a parallel tank circuit with resonant frequency
!T=2� � 20:139 MHz and quality factor QT �
!TRTCT � 1680 (at 10 mK; RT is an effective tank
resistance) [16]. The external magnetic flux through the
qubits was created by the dc component of the current in
the coil Idc1, and by the bias current Idc2 through a wire
close to one of the qubits. This allowed independent
control of the bias in each qubit.

The system of Fig. 1 is described by the Hamiltonian
H � H0 �HT �Hint �Hdiss, where the two-qubit
Hamiltonian in the two-state approximation is expressed
through Pauli matrices as [17]

H0 � ��a�
	a

x � �b�

	b

x � �a�

	a

z � �b�

	b

z � J�	a


z �	b

z ;

(1)
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FIG. 1. Two-qubit system coupled to a resonant tank circuit: (a) schematic; (b) micrograph.
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HT is the tank Hamiltonian (a harmonic oscillator), the
qubit-tank interaction is

Hint � �	�a�
	a

z � �b�

	b

z 
IT; (2)

and Hdiss describes the standard weak coupling of the
qubits to a dissipative bath [18]. Here IT is the current
through LT. The coefficients are �a=b � Ma=b;TIa=b,
where Ma=b;T is the qubit-tank mutual inductance and
Ia=b is the magnitude of the persistent current in the
corresponding qubit. The qubit biases are given by �a �
Ia
0	fx �

1
2� fshift
, �b � Ib
0	fx �

1
2� �fshift
, where

fx � 
=
0 accounts for the external flux 
 / Idc1 cre-
ated by the Nb coil in both qubits, while the parameters
fshift / Idc2 and � � Mbw=Maw < 1 describe the bias dif-
ference between the qubits created by the additional wire.
Here Maw (Mbw) are the mutual inductances between the
a (b) qubit and the additional dc wire (for our sample,
Maw and Mbw were calculated numerically, yielding � �
0:32). The qubit-qubit coupling J � MabIaIb is positive
because the two qubits are in the same plane side by side,
leading to antiferromagnetic coupling (according to the
north-to-south attraction law).

The effective inductance of the tank, and therefore its
resonant frequency, depend on the state of the qubits. In
the IMT method [11], this dependence is observed by
continuously monitoring the phase angle ! between the
average tank voltage and bias current Ibias	t
 fed into the
tank (Fig. 1). For small enough Ibias, tan! is determined
by the real part of the two-qubit contribution to the tank
susceptibility �0 at !T [19], viz.,

tan! � �
QT
LT

�0	!T
; (3)

where �	!
 has a Kubo-type linear-response expression
through retarded Green’s functions of the qubit operators
�	a=b

z . For weak damping Hdiss, the latter can be calcu-

lated with the equilibrium density matrix corresponding
to H0 in Eq. (1). It can be generally assumed that the
eigenvalues E� of H0, � � 1; 2; 3; 4, are nondegenerate
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and the eigenstates normalized, h j�i � !� . Taking into
account the qubits’ interaction with a dissipative environ-
ment [19,20], a standard calculation gives [21]

�	!
 � �
X

�� 

"� � " 
$h!� E� � E � i $h%� 

R� ; (4)

where "� � e�E�=T=�
P

 e
�E =T� is the population of en-

ergy level �, %� in the energy denominators are deco-
herence rates, and the real matrix elements are

R� � �2ah�j�	a

z j ih j�	a


z j�i � �2bh�j�	b

z j ih j�	b


z j�i

� �a�bh�j�	a

z j ih j�	b


z j�i

� �a�bh�j�	b

z j ih j�	a


z j�i: (5)

Substitution into Eq. (3) yields

tan! � �2
QT
LT

X

�< 

"� � " 
E � E�

R� : (6)

At low frequencies �!T � jE� � E j= $h and for weak
damping %� � jE� � E j= $h, the %� do not affect tan!
but are responsible for establishing the equilibrium
distribution.

The first two terms in Eq. (5) are clearly positive, and
nonzero even if the two-qubit states are factorized. The
first (second) term corresponds to the contribution of
qubit a (b) and peaks near that qubit’s degeneracy point.
These contributions are practically independent of
whether the qubits’ degeneracy points coincide or not.

The last two terms in Eq. (5) describe coherent flipping
of both qubits, which is possible only for nonfactorizable
(entangled) eigenstates j�i; j i. For J > 0, these terms
are found to be negative. Therefore the difference (IMT
deficit) between the coinciding two-qubit IMT dip and the
sum of two single-qubit dips provides a measure of how
coherent the two-qubit dynamics is, that is, whether en-
tangled eigenstates of H0 are formed [21]. Eigenstate
entanglement is a necessary condition for the equilibrium
state to be entangled; of course, the eigenstate populations
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play a role as well. However, it is already a sufficient
condition for performing quantum gate operations (if
decoherence times are long enough), since one can also
initialize the system in a nonequilibrium state, say, by
letting it relax at a point in parameter space for which
there is a large gap above the ground state and subse-
quently returning to the working point [2,3].

The measurements on the system of Fig. 1 allowed us to
determine all parameters of H0. The data are presented in
Fig. 2 ( tan! vs flux bias) and in Fig. 4 (T dependence of
dip amplitudes).

First, consider Idc2 � 27:3 (�32:7) �A, i.e., unequally
biased qubits. In this case, whenever one qubit is near
degeneracy, the other is strongly biased, putting it into a
unique classical ground state (at the low end of our
T range) in which it behaves trivially. Hence, one essen-
tially observes single-qubit properties. We match the cor-
responding IMT dips of Fig. 2 with the predictions of
Eqs. (5) and (6) for both the width and amplitude; see
Fig. 3. This yields �a=h � 550 MHz, �b=h � 450 MHz,
and the persistent currents Ia � Ib � Ip � 320 nA,
for a flux-to-energy bias conversion factor Ip
0=h �
990 GHz [22]. The width of the dips is practically
T independent, as expected [15]. The T dependence of
the amplitudes (Fig. 4, squares and triangles) agrees with
these values for �a=b. (The saturation below 35–40 mK
[15] is likely due to a discrepancy between the mixing-
chamber and sample temperatures.)

We can determine the coupling constant in Eq. (1) from
the single-qubit measurements, as J=h � MabI2p=h �
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FIG. 2 (color online). Normalized tangent of the current-
voltage angle in the tank vs external bias 
. From the lower
to upper curves, the temperature of the mixing chamber is 10,
50, 90, and 160 mK. A relative flux bias fshift between the
qubits is created by changing the current Idc2 in the additional
wire. The shifted curves correspond to Idc2 � 27:3
(�32:7) �A. Two IMT dips are then observed, showing tun-
neling in each qubit at the corresponding degeneracy point
fx � 1

2 . The central curve has Idc2 � �2:7 �A. Both qubits are
degenerate simultaneously at fx �

1
2 . One IMT dip is observed,

with an amplitude about 33% (at small T) less than the sum of
two separate dips.
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410 MHz. This agrees well with the value J=h �
420 MHz obtained by fitting the T dependence of the
coincident IMT dip amplitude above the saturation tem-
perature (Fig. 4, circles) with the theoretical curve.

Comparison of the single-qubit and coincident IMT
dips shows that the contribution to tan! due to eigenstate
entanglement is significant. Indeed, the amplitude of the
central dip in Fig. 2 at T � 50 mK is 1.12, compared to
the sum 1.69 of the single-qubit dips. This means that the
entangled terms [last two in Eq. (5)] are responsible for a
contribution ��0:57. As the dashed line in Fig. 3 shows,
dropping these terms would yield the coincident IMT
dip in marked deviation from both the full theory and
experiment.

The IMT deficit also confirms the sign of the qubit-
qubit interaction: in the case of ferromagnetic coupling,
the coincident dip should have been larger than the sum
of the single-qubit ones.

Plotting the ratio of the coincident dip to the sum of
single-qubit ones (Fig. 4, inset), we see that it grows
with T, approaching �1. This is to be expected: thermal
excitations tend to destroy coherent correlations between
the qubits (which then behave as independent quantum
systems with zero IMT deficit) —eventually, of course,
destroying the single-qubit IMT dips as well.

At 50 mK, T is comparable to the characteristic qubit
energies (at the two-qubit degeneracy point, the top ex-
cited state is �100 mK above the ground state). The
measurement time equals at least the tank saturation time
QT=!T and is longer in practice, 1� 10 ms. Since this
exceeds any conceivable qubit relaxation time �%�1� , the
system has time to equilibrate. Indeed, the good quanti-
tative agreement between experiment (Figs. 2 and 4) and
theory [Eq. (6)] in a wide range of T confirms that our
system is described by the equilibrium density matrix
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FIG. 3 (color online). Theoretical fit of the normalized tan-
gent of the current-voltage angle in the tank vs external bias
.
Solid curves, from lower to upper: T � 50, 90, and 160 mK.
The interaction energy between the qubits is 420 MHz. The
dashed central peak corresponds to T � 50 mK, but with the
entangled contributions in Eq. (5) omitted. Relative flux biases
are the same as for the experimental curves in Fig. 2.
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FIG. 4 (color online). Temperature dependence of the IMT
dip amplitudes. Squares: qubit a; triangles: qubit b; circles:
coincident dip. The solid and dashed curves are theoretical fits
(the dashed one is for qubit a; the b curve is essentially
identical for T > 50 mK). Inset: relative size of the coincident
dip tan!c=	tan!a � tan!b
; the dotted line is the theoretical
curve.
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with the Hamiltonian (1). In other words, it is in a
mixture of entangled two-qubit eigenstates.

A measure of the entanglement of an arbitrary state is
the concurrence C [23], changing monotonically from 0
for nonentangled to 1 for maximally entangled states. For
a normalized pure state %j00i � &j01i � 'j10i � !j11i,
one has C � 2j%!� &'j; in general, C depends on both
the existence of entangled eigenstates and their popula-
tion, and can be erased by temperature faster than quan-
tum coherence in individual qubits [24]. Using the
experimentally established parameters of the Hamil-
tonian (1), the concurrences of its eigenstates at the
two-qubit degeneracy point are immediately calculated:
C1 � C4 � 0:39, C2 � C3 � 0:97. For the equilibrium
density matrix of our system at 10 mK, these give Ceq �
0:33. This value decreases with rising T, vanishing
around 30 mK. However, from Eq. (6) it can be seen
that ! depends on T much more weakly (through the
Boltzmann factors "�), so that the IMT deficit can be
reliably extracted even at temperatures where Ceq is small
or even zero.

We stress that for quantum computing, it is the exis-
tence of entangled eigenstates that matters, not the mea-
sure of equilibrium entanglement [cf. the discussion a bit
below Eq. (6)], since the system anyway must operate on a
faster scale than the equilibration time. The crucial re-
quirement is that the decoherence time (2q of the en-
tangled eigenstates exceeds the operation time. The
presence of an IMT deficit shows that in our system (2q
is larger than min	 $h=�a=b; $h=J
 � 1 ns; its actual value
can be determined using, e.g., the approach of [14].

In conclusion, we have investigated two inductively
coupled aluminum flux qubits with independently con-
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trolled bias fluxes. The impedance measurement tech-
nique directly measures the low-frequency part of the
system’s magnetic susceptibility. The quantitative agree-
ment between theory and experiment confirms that the
system is in an equilibrium mixture of entangled states.
Besides trying to scale the approach to larger qubit sys-
tems, it will next be important to study the system’s
coherence properties in detail and to establish time-
domain control enabling actual quantum gate operations.
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