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A general elastohydrodynamic theory is developed based on the phenomenological assumption of a
sharp decrease of shear relaxation time at large wave vectors k > k�, where k� is of order of inverse of
several interatomic distances a. This theory describes the low-energy excitations of glassy and
amorphous solids, which contribute to anomalous linear-in-temperature specific heat and limit phonon
thermal conductivity. The ratio of the wavelength of the phonon, �, to its mean free path, l, which is the
universal property of sound absorption in glasses, is derived in this theory to be �=l �
�2=3��ct=cl�

2�k�a�
3, where ct and cl are transverse and longitudinal sound velocities correspondingly.
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with large wave vectors k and small frequencies. The
same assumption leads naturally to the appearance (or

phonon processes, being proportional to the phonon
density of states (of high frequency or thermal phonon
Glasses at low temperatures (T < 1–5 K) show a re-
markable universality in their sound absorption: ‘‘the
ratio of the phonon wavelength, �, to the phonon mean
free path, l, has been found to lie between 10�3 and 10�2

in almost all cases, independent of chemical composition
and frequency (wavelength) of the elastic wave which
varied by more than nine orders of magnitude in the
different experiments’’ [1]. The so-called standard tun-
neling model of glasses [2] assumes phenomenologically
the existence of independent local tunneling two-level
systems (tunneling TLS’s) with wide distribution of tun-
neling splittings and relaxation times. The standard
model had much success in describing several low-
temperature properties of glasses (specific heat, thermal
conductivity, etc.) (for a review, see [3]). The coherent
nature of excitations was revealed by echo and spectral
diffusion experiments, while the tunneling aspect of
TLS’s was never clearly demonstrated experimentally
[4]. Most importantly, the understanding of the aforemen-
tioned universal absorption is beyond the scope of the
standard model, because the density of tunneling TLS’s
has to be assumed arbitrarily for this model [5].
Moreover, the independence of tunneling TLS’s implies
large variation and nonuniqueness of density of TLS’s in
different materials, in contradiction to experimental ob-
servations [1].

In this Letter I construct a phenomenological visco-
elastic theory, alternative to the phenomenological stan-
dard model, based on a single assumption that the
relaxation time of structural shear modulus has a sharp
threshold, becoming finite for large wave vector elastic
perturbations of amorphous structure. This assumption is
reminiscent of the Maxwell theory of viscoelastic liquids,
with the important difference that here the relaxation
time is assumed to be finite only for short-wavelength
perturbations. The low-energy states of this theory (in
addition to phonons), contributing an almost linear-
temperature specific heat, are collective density modes
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rather redistribution) of additional density of states at
high frequencies (so-called boson peak). The universal
dimensionless constant �=l of amorphous condensed
matter physics is derived in this phenomenological theory
to be due to the weak coupling between phonons (small k)
and relaxational collective (large k) modes.

There is more to be said about universality of �=l ratio
in glassy and other types of materials. It appears that at
low temperatures only for pure crystalline solids and
quantum liquids (He3 and He4) this universality is not
applicable (for a few other exceptions, see the review [1]),
while for a huge class of materials [1] (a large number of
disordered crystals and polycrystals, some quasicrystals
and metallic glasses, in addition to insulating glasses of
various types) the ratio of �=l falls into the same range
10�3 to 10�2. Another insightful observation into the
nature of universality of �=l came from the irradiation
experiments on crystalline silicon [6]. In a certain wide
range of irradiation doses, the irradiated samples show
the sound absorption properties very similar to glasses. It
is illogical to believe that independent tunneling states
are generated by irradiation in such a situation at a fixed
universal density. It seems that a more general assumption
is required to understand this remarkable universality,
since neither amorphicity nor glassiness is a necessary
condition for universality to appear.

Glassy and amorphous solids are solids in the sense that
shear and compressional moduli are finite at low frequen-
cies. The transverse and longitudinal phonons with long
wavelengths are well-defined excitations, since the pho-
non mean free path is much longer than its wavelength,
l� 102�. As the wavelength of phonon becomes com-
parable to the correlation length of frozen disorder [7],
Rayleigh scattering of phonons by disorder as well as
anharmonicity become important. Elastic Rayleigh
scattering of phonons has strong dependence on the
wavelength � of phonon, �=l � 4�2��=��3, where �3 is
the ‘‘correlation volume’’ of disorder. Anharmonic three-
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involved), also become more relevant at higher frequen-
cies (or shorter wavelengths). The corollary of such an
argument is that at short length scales a combined effect
of anharmonicity and disordered arrangement of atoms
may produce finite shear relaxation. To be precise (rigor-
ous justification of the assumption is the subject of micro-
scopic theory and beyond the scope of this Letter), the
main phenomenological assumption (PA) is the following
statement: structural shear relaxation time decreases
sharply as a function of the wave vector k from infinity
at small wave vectors [k < k� � 1=�, where � is the
typical correlation length of disorder in glasses of order
of several interatomic or intermolecular (or any elemen-
tary unit of structure) distances] to a finite relaxational
time smaller or of the order of inverse phonon frequency
for wave vectors k > k�. This PA is firmly based on
experiments [8] as well as motivated by various studies
[9]. The main idea of this Letter is to construct a minimal
hydrodynamic theory based only on macroscopic conser-
vation laws and the PA.

To derive the spectrum of density modes it is sufficient
to use macroscopic conservation laws and constitutive
relation for the stress tensor [10,11]. The conservation of
the mass density 
 and the conservation of momentum
density gi � 
vi are in a linearized approximation

@t
� 
0 div ~vv � 0; (1)


0@tvi �rj�ij � �n0ri�Vext; (2)

where vi and �ij are local values of velocity and stress
tensor fields, and n0 � 
0=m is an equilibrium number
density. The constitutive relation between the stress tensor
�ij and the strain tensor uij is assumed to be

�ij �
2�

1� i=	!�s�k�

uij ��ull�ij; (3)

where � and� are Lame coefficients [11], and �s�k� is the
shear relaxation time, dependent on the wave vector k of
the periodic modulation. Notice that, if !�s�k� � 1, the
constitutive relation describes a solid body with a finite
shear modulus. While for !�s�k�< 1 the constitutive
relation describes a viscoelastic medium with frequency-
and wave-vector-dependent viscosity �k�!� � ��s�k�=
	1� i!�s�k�
, but yet with a finite shear modulus
Re��!� � ��!�s�

2=	1� �!�s�
2
. Notice that for k >

k�, PA states cl;tk�s�k� � 1 and never cl;tk�s�k� � 1.
Coupling between thermal variables (e.g., gradients of
temperature) and mechanical variables is neglected
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here. A particular functional dependence of �s�k� is not
considered, since this dependence may vary among vari-
ous materials. The only requirement is that �s�k� drops
sufficiently fast at k� k�. Substituting Eqs. (1) and (3)
into Eq. (2), the longitudinal density correlation function
can be calculated:

 
;
�k;!� �
n0k

2=m

�!2 � k2�c21 �
c21�c

2
0

1�i!�s�k�
�
; (4)

with c21 � c2l � ��� 2��=
0 and c20 � �=
0. The lon-
gitudinal density fluctuation spectrum is given by
Im 
;
�q;!� and has long low-frequency (!� clk)
tails, which can be approximately written as

Im 
;
�k;!� �
n0
m

c21 � c20
c40

!�s�k�

1� 	!�s�k�
2�c1=c0�4
:

(5)

Therefore, due to shear stress relaxation, collective den-
sity modes at large k > k� have a linear ‘‘bosonic’’
density of states at low frequencies. This is a very general
observation if there is any kind of relaxation for high-k
modes. These modes of low frequency and short wave-
length describe local anharmonic rearrangements of
atoms, TLS’s of the standard model being a special in-
stance, which are spatially correlated due to finite elastic
bulk and shear moduli. Such atomic rearrangements are
strongly inhibited in a crystalline solid due to the pres-
ence of short and long range order.

In a similar manner, the correlation function for
the transverse part of momentum density gTi � 
vTi
can be calculated [12]:  gT;gT �k;!� � �c2t k

2=
0�=
	!2 � c2t k

2 � i�!=�s�k��
; where the transverse sound
velocity is ct �

������������
�=
0

p
. The correlation functions of

density Im 
;
�k;!� and momentum density
Im gT;L;gT;L�k;!� can be used to calculate the inter-
action and kinetic energies correspondingly. For in-
stance, the interaction energy is given by hVinti �R
d!

R
dDkV�k� Im 
;
�k;!� coth	 �h!=�2kBT�
, where

V�k� is the interparticle interaction. The total energy,
adding contributions from longitudinal and transverse
degrees of freedom, can then be calculated in the har-
monic approximation. The essential result for the linear
temperature dependence of the specific heat, due to the
interaction part of the energy, can be noticed already
from the linear density of states [Eq. (5)]. Another tech-
nical way to calculate the specific heat is to use the
expression for the entropy of interacting boson modes
[13] derived using a diagrammatic approach:
S�T� ’
1

�

Z 1

0
d!

e*!

�e*! � 1�2
!

T2

X
k

�
Im ln

�
n0k2=m
 
;
�k;!�

�
�
�c21 � c20�k

2!�s�k�

1� 	!�s�k�

2 Re

�
 
;
�k;!�

n0k
2=m

�	
: (6)

Notice that the sum over k at low frequencies for the second term in Eq. (6) is approximately equal to
P
kIm 
;
�k;!�

from Eq. (5). Thus, as inferred before from the interaction energy, the entropy and the specific heat have a linear
temperature dependence. For the purpose of approximate estimates, the specific heat CV�T� after integrating over the
range of wave vectors
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k� < k < ku (ku is upper cutoff) with some typical re-
laxation time �s;typ is

CV�T� �
k3u
3�2 �kBT�s;typ�

�
A�c21 � c20�

c20
�

6B

c2t k2u�2s;typ

�
; (7)

where A and B are numerical factors of order one. A crude
estimate [ �h=�s;typ � �h�BP � kBTBP, kBTBP � 50 K, ku �
107–108 cm�1, and a factor �c21 � c20�=c

2
0 as 0:3] gives the

density of states from �1033 to �1036 �ergs cm3��1 for
ku � 108 cm�1, which is roughly of order of experimental
values. In general, the two terms in brackets, coming from
the longitudinal and transverse contributions, are com-
parable, but depend in different ways on parameters.

The PA straightforwardly implies an accumulation of
additional density of states around frequency �BP ’ c0k�,
since �s�k� drops sharply to a finite value around k�. This
is the so-called boson peak observed in neutron and
Raman scattering [14]. First, notice that the maximum
of the spectrum Im 
;
�k;!� as a function of frequency
! is shifted downward from c1k if !�s � 1 toward c0k
if!�s < 1. Since it happens for the range of wave vectors
k, large additional weight from the range of k wave
vectors is redistributed from high frequencies to the
frequency around the boson peak. Second, the shape of
the intensity Im 
;
�k;!� is asymmetric with larger
weight above the maximum. All these factors contribute
to the additional density of states around �BP: -�!� �P
kIm 
;
�k;!� c0k��. The intensity of the boson peak

varies depending on a detailed dependence of �s�k�,
which is beyond the framework of the phenomenological
theory (but see Ref. [9]), and, indeed experimentally,
intensity of the boson peak varies significantly among
various glasses.

The calculation of sound attenuation [15] needs to take
into account the wide distribution of relaxation times
postulated in the PA. We are interested in the attenuation
of a low-frequency phonon with frequency ! (to be
distinguished from ! of the density spectrum) by slow
relaxational density modes such that !�s�k� � 1, and
therefore a hydrodynamic description of attenuation is
applicable. The simplest way to calculate the sound ab-
sorption is to use a classical expression for absorption due
to finite viscosity [11]: .l �

!2

2
c3l
�4=3�Re�k�!�. The low-

frequency phonon is absorbed by all collective modes
with various large wave vectors k and corresponding
relaxation times �s�k�:

.l �
2!�

3
c3l

X
k

!�s�k�

1� 	!�s�k�
2
: (8)

Finally, the ratio of the wavelength �! to the mean free
path l! is remarkably simple:

/ �
�!
l!

�
2

3
F
c2t
c2l
; (9)

F �
2�
n0

Z d3k

�2��3
!�s�k�

1� 	!�s�k�

2 ’ �k�a�3; (10)
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where n0 � 1=a3. The small numerical factor F is a
constant, independent of frequency, since the integrand
in the integral is essentially a � function because of the
sharp dependence of �s�k� on k. The constant F is very
weakly dependent on the detailed functional form of
�s�k� and other parameters. The simplicity of the main
result —Eq. (9)—for the universal ratio gives insight into
the origin of universality. This ratio depends only on the
squared ratio of transverse and longitudinal sound veloci-
ties and the third power of the ratio of typical interpar-
ticle distance a to the scale of correlated disorder �. This
result is equally correct for longitudinal and transverse
phonons at low frequencies, because the damping is due
to the coupling to short-wavelength density modes in
inhomogeneous media. A more systematic calculation,
using a kinetic equation formalism [11], gives the same
result. The starting point for such a calculation is that the
low-frequency phonon of frequency ! causes the varia-
tion of the density �
k�!� at this frequency, for all modes
with various k’s and corresponding ��k�, and this, in turn,
changes the phonon frequency �! � !�.k�
k�=
0,
where .k is a Gruneisen parameter.

Straightforwardly, the thermal conductivity is
1�T� ’ Cv;ph�T�c0l�T� � T2, where Cv;ph�T� � T3 is the
phonon-only specific heat, and for thermal phonons
( �h!� kT and also kT � �h�BP) the mean free path is
l�T� � �!=/� 1=T.

The density spectrum of Eq. (4) is essentially given by
a linearized spectrum of the Navier-Stokes equation with
viscoelastic moduli. Various nonlinear terms (e.g., of the
type vjrjvi, due to the 
vivj part of momentum density
tensor) should be added to Eq. (2) [11] to treat nonlinear
effects. The anomalous extended states, associated with
low-frequency tails of high-k density modes [Eq. (5)],
interact weakly with the small-k sound modes (consis-
tently with Ref. [16]), since this interaction is described
by the small coupling constant / of the sound absorption.
Note also that echoes can arise from extended collective
modes in inhomogeneous media, and examples are
plasma and ferrites [17]. Therefore, various nonlinear
effects observed in glasses (saturation, echoes, and spec-
tral diffusion) are not a priori inconsistent with the
picture of extended anomalous states. Nonlinear effects
as well as long-time logarithmic specific heat (due to the
bulk viscosity) will be addressed in the future.

In this paragraph, I compare briefly the elastohydrody-
namic theory (EHT) proposed here with theories sug-
gested in the literature. The main difference between
the standard model [2] and the EHT is that for the former
low-energy excitations are independent tunneling sys-
tems, while for the latter these excitations are extended
modes of short-wavelength modulation of the density.
The shortcomings of the standard model [18] were dis-
cussed convincingly, and the long-range dipolar inter-
action between local defects (e.g., TLS’s) was suggested
to lead to universality [5]. The EHT encapsulates the
collective nature of anomalous states arisen due to the
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interaction among the local defects (not necessarily two-
level systems of any sort) by the elasticity fields, and
therefore EHT is indeed somewhat similar in spirit to
the earlier proposal [5]. A density spectrum, Eq. (4), was
considered before [13] but with a very different assump-
tion. The relaxation time �s was assumed to be indepen-
dent of wave vector k and dependent on temperature. Such
an assumption does not lead to linear frequency damping
of low-frequency phonons as in Eq. (9) and does not
explain the existence of the boson peak.

There are several directions to test experimentally the
proposed theory. Direct observation of collective modes
by inelastic neutron and x-ray scattering at large momen-
tum k and small energies !� �BP would be a most
direct test. Another consequence, which follows from
Eq. (4), is the broadening of sound waves close to the
boson peak, $k � �c21 � c20�k

2�s�k�, proportional to k2 if
�s�k� is weakly dependent on k above the boson peak
crossover (ck��s � 1), which, it seems, was already ob-
served experimentally [8,14]. Inelastic x-ray scattering
[14] provides a direct support for the PA in vitreous silica,
where strong phonon scattering occurs from the length
scale 2�=qco � 30 %A (to be associated with �), which is
much longer than the size of elementary structural unit,
SiO4 tetrahedra. Since the anomalous low-frequency
modes states appear as the low-frequency tails of high-k
density modes around �BP, it would be interesting to test
experimentally if high-k modes are coupled relaxation-
ally to the anomalous states. Experiments with nonlinear
coupling of spectral diffusion type between the high-k
modes and anomalous states would be desirable. Finally,
echo experiments in their functional relationship to pulse
amplitudes and time intervals should be able to differ-
entiate between local and extended modes [17].

It is interesting to inquire further into the origin of
universality. Equation (9) shows that the small universal
number/ is given essentially by the cube of the ratio a=�.
Therefore, the universality of the a=� ratio and the sharp
onset of shear relaxation are further important questions
for the investigation. The smallness of the ratio a=� arises
due to the presence of short-range correlation among
atoms, which can be called medium-range structural
order [19]. A close analogy of this dimensionless number
to small numbers associated with various melting tran-
sitions can be noted.

In conclusion, the collective low-frequency density
excitations, which are due to a finite shear relaxation
time at short length scales, are shown to have the
linear-in-frequency density of states, Im 
;
�k;!�.
These anomalous excitations contribute a linear-in-
temperature specific heat and determine the inelastic
mean-free path of phonons, l! � �!=/. The universality
of the sound attenuation ratio / � �!=l! is related to the
cube of small ratio a=� of average interatomic distance a
to the medium-range order length �.

I thank A. J. Leggett and P. Eastham for valuable
discussions and comments about the manuscript.
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