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Pattern Control via Multifrequency Parametric Forcing
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We use symmetry considerations to investigate control of a class of resonant three-wave interactions
relevant to pattern formation in weakly damped, parametrically forced systems near onset. We classify
and tabulate the most important damped, resonant modes and determine how the corresponding
resonant triad interactions depend on the forcing parameters. The relative phase of the forcing terms
may be used to enhance or suppress the nonlinear interactions. We compare our symmetry-based
predictions with numerical and experimental results for Faraday waves. Our results suggest how to
design multifrequency forcing functions that favor chosen patterns in the lab.
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FIG. 1. Fourier space diagram of resonant triads composed of
two critical modes (jk1j � jk2j � k1) and a damped mode
actions involving two parametrically driven critical (k3 � k1 � k2, jk3j � k3) with (a) k3 < k1, (b) k1 < k3 < 2k1.
Three-wave resonance plays a crucial role in the dy-
namics of many systems including fluids [1], plasmas [2]
and optics [3], often providing the building blocks of
complex nonlinear states. One can therefore influence a
wide range of nonlinear states by controlling the under-
lying resonant triad interactions. In this Letter, we pursue
the implications of this idea for pattern formation in
spatially extended, parametrically forced systems.

Periodically modulated systems are abundant in na-
ture. Likewise, parametric forcing has become a common
tool for experimentalists. In fluid [4] and granular [5]
systems this forcing typically takes the form of vertical
vibrations, which, at sufficient strength, lead to patterns
of standing waves on the free surface. In photosensitive
reaction-diffusion systems the parametric forcing may
take the form of periodic pulses of light [6], while recent
experiments on ferrofluids have used a periodically
modulated magnetic field [7]. A rich variety of states
has been observed in these systems, including superlattice
patterns, quasipatterns, and localized structures.

A prototypical model for parametric instability, the
Mathieu equation captures several common features of
parametrically forced systems [8]. With a forcing fre-
quency !, one expects a number of frequency-locked
resonance tongues associated with natural modes of fre-
quency N !

2 , N 2 Z�. In damped systems the N � 1
‘‘subharmonic’’ mode typically sets in first and dominates
the dynamics near onset. Nonetheless, secondary reso-
nance tongues still play an important role in the selection
of nonlinear states, particularly in weakly damped sys-
tems, and even more so when the forcing is not strictly
sinusoidal (different Fourier components in the forcing
will favor different modes).

We focus on controlling a class of resonant triad inter-
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modes and a third, linearly damped mode whose wave-
length determines a resonant angle �res; see Fig. 1. The
damped mode may draw energy from the excited modes,
creating an ‘‘antiselection’’ mechanism that suppresses
such triads in favor of patterns that avoid the resonant
angle [9], or it may serve as an energy source, and instead
enhance associated patterns [10]. We describe a system-
atic method for ranking triad interactions according to
their importance in the weakly damped limit, and, in
many cases, for controlling their effect via the multifre-
quency forcing function

F�t� � fme
im!t � fne

in!t � fpe
ip!t � � � � � c:c:; (1)

characterized by the choice of commensurate frequencies
�m!; n!; p!; . . .�, amplitudes �jfmj; jfnj; jfpj; . . .�, and
phases ��m;�n;�p; . . .�, where �u � arg�fu�.

Our main result is a table summarizing, for up to three
forcing frequencies, which damped modes are likely to be
important, the manner in which their coupling with criti-
cal modes depends on the forcing parameters and, in
many cases, the overall qualitative effect (enhancing or
suppressing) they have on associated patterns. This table
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indicates how patterns may be selected, or ‘‘designed,’’
by judiciously adjusting the Fourier content of F�t�. The
theory pertains to spatially extended systems with weak
damping, but otherwise is quite general, relying only on
the spatial and temporal symmetries of the problem, and
on the dispersion relation. The details of the particular
governing equations, which are unavailable in many
cases, are not needed. We demonstrate the utility of our
results in two examples relevant to recent experiments on
pattern formation on vertically shaken fluid layers
(Faraday waves).

Our analysis uses the (broken) symmetries of time
translation, time reversal, and Hamiltonian structure, as
in [11]. We take � to be the dominant frequency of the
damped k3 mode of Fig. 1; the interesting values of � are
determined below. Time is rescaled so that ! � 1, and we
denote by m the component of the forcing that drives the
critical modes, which therefore have dominant frequency
m=2. All other modes are linearly damped.We expand the
physical variables (e.g., surface height h for Faraday
waves) in terms of six traveling waves (TW):

h�x; t� �
X3

j�1

X

�

Z�
j �t� e

i�kj�x�$jt� � c:c:� � � � ; (2)

where $1 � $2 � m=2 and $3 � �. The TW amplitude
equations must respect the spatial symmetries of the
problem (translation, reflection through k3, inversion
through the origin) and the temporal symmetries

T� : Z�
j ! e�i$j�Z�

j ; fu ! eiu�fu; (3a)

� : Z�
j $ Z�

j ; �t; �� ! ��t; ��; fu ! ffu; (3b)

representing time translation and reversal, respectively.
Here u denotes any of the frequencies fm; n; p; � � �g in (1)
and � is a dimensionless damping parameter.

The equivariant TW equations take the form

_ZZ�
1 � �Z�

1 � �fmZ�
1 �Q1�Z�

2 ; Z
�
3 � � � � � ; (4a)

_ZZ�
3 � %Z�

3 ��F2�Z
�
3 �Q3�Z

�
1 ; Z

�
2 � � � � � ; (4b)

with the remaining four equations related by symmetry.
The parametric forcing term F2� represents products of
the fu whose frequencies sum to 2� (F2� � f2� when
2� forcing is present). The resonant terms

Q1 � �Q1Z�
3 �Q2Z�

3 �
ZZ�
2 � �Q3Z�

3 �Q4Z�
3 �

ZZ�
2 ;

Q3 �Q5Z
�
1 Z

�
2 �Q6�Z

�
1 Z

�
2 � Z�

1 Z
�
2 � �Q7Z

�
1 Z

�
2 ;

appear at quadratic order with coefficients Q‘ that, ac-
cording to T�, must transform as �Q1; QQ5� � ei�m����,
�Q2; Q7� � ei�m����, �Q3; QQ4; QQ6� � e�i��. The depen-
dence of the linear coefficients �, �, etc., on � and the
fu, is also determined by the symmetries T� and �, e.g.,

� � i�i � �r�� ic��2 � i
X

u

cujfuj2 �O��3; �jfuj2�;

where �i; �r; c�; cu 2 R. With k1 and k3 defined by the
local minima of the neutral stability curves the detunings
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Im��� and Im�%� must vanish at � � fu � 0. We need
only the leading term in each coefficient:

� ���r�; % � �%r�; � � i�i;

� � i�i; Q‘ � iq‘F‘;

where �r; %r > 0 (they correspond to damping terms),
�i; q‘ 2 R and F‘ denotes an appropriate product of the
fu (or unity). It follows that the critical value of jfmj is
O��� and, since all jfuj are assumed to be related by a
finite �-independent ratio, jfuj � �.

For a given damped mode, we determine how the
resonant coefficients Q‘ depend on the fu, then apply a
standard reduction procedure at the bifurcation to stand-
ing waves (SW). At cubic order we obtain

_AA 1 � �A1 � A1�ajA1j
2 � �b0 � bres�jA2j

2�; (5)

where A1;2 are the slowly varying complex amplitudes of
the SW near onset, and all coefficients are real. _AA2 is
obtained from A1 $ A2. The self-interaction coefficient
a and the ‘‘nonresonant’’ term b0 are O���.

Of central interest in (5) is the contribution bres captur-
ing the effect of the slaved modes Z�

3 . Loosely speaking,
if bres > 0 the stability of patterns involving the angle �res
is enhanced, while bres < 0 is suppressing [12].

The most important damped modes are those for
which bres is O��� or larger and there are here two
possibilities. If some of the Q‘ are O�1� then bres is
O���1� and dominates in the weak damping limit; this
happens only for � � m and is in essence a single-
frequency phenomenon (the ‘‘first harmonic’’ resonance).
If � � m and some of the Q‘ are O��� then bres is O���,
and hence comparable to b0. This occurs when � 2
f2m; n;m� n; n�mg for some forcing frequency compo-
nent n. Each of these conditions on � generates a par-
ticular type of coupling at O���. For example, with
� � n�m we have F2 � F7 � fn. If more than one
condition is satisfied, there are more coupling terms
(e.g., if � � n�m � m� p, then one would also have
F1 � FF5 � fp).

In addition to the issue of coupling terms, it matters
whether or not the damped mode is parametrically forced
at O���. This forcing is present when there is a frequency
2� in F�t� and magnifies the resonance effect as it brings
the damped mode closer to criticality. It also gives rise to
an important phase dependence as the parametric forcing
of f2� competes with the nonlinear forcing of Q3 [see
Eqs. (4)]. The ability to reveal phase information, via T�,
is a crucial advantage of starting with a TW description.

In Table I we give the leading contribution to bres of the
important damped modes for forcing functions contain-
ing up to three frequencies �m; n; p�. To simplify the
expressions therein, we define

(1 � q1q5; (2 � q2q7; (3 � 2q6�q3 � q4�;

(4 � q1q7 � q2q5; (5 � )��2q1q6 � q5�q3 � q4��;

(6 � )��2q2q6 � q7�q3 � q4��; )� � sign��i�; (6)

and the functions
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TABLE I. Leading resonant contribution bres in (5) for the most important damped modes under appropriate choice of (up to)
three-frequency forcing. Here, m; n; p;� > 0 and x 2 Z�. Each expression for �m; n; p�, given �, is excluded from those of entries
further down the table. Dots in the first column indicate an arbitrary commensurate frequency (if present). For ? the � follows sign
(m� n).

�m; n; p� � Leading resonant contribution bres Relevant phase(s)

�m; �; �� m �(1=j%j
�m; �; �� 2m �(1jfmj2=j%j
�m; n; �� n �(3jfnj

2=j%j
�m; n; �� m� n �(1jfnj

2=j%j
�m; n; �� n�m (2jfnj

2=j%j

�m; 2m; �� m �(1Pn��� � � �n � 2�m

�m; 4m; �� 2m �(1jfmj
2Pn��� � � �n � 4�m

�m; n; 2n� n �(3jfnj
2Pp��� � � 2�n ��p

�3x; 2x; �� x �(1jfnj
2Pn��� � � 3�n � 2�m

�m; n; 2m� 2n� m� n �(1jfnj
2Pp��� � � �p � 2�m � 2�n

�m; n; 2n� 2m� n�m (2jfnj
2Pp��� � � �p � 2�m � 2�n

�m; 2m; �� 2m ��(1jfmj
2 � (3jfnj

2 � (5jfmjjfnj sin��=j%j � � �n � 2�m

�m; 3m; �� 2m ��(1jfmj
2 � (2jfnj

2 � (4jfmjjfnj cos��=j%j � � �n � 3�m

�m; n; jm� nj� n ��(1jfpj
2 � (3jfnj

2 � (5jfnjjfpj sin��=j%j � � �n ��m ��p ?
�m; n;m� n� n �(2jfpj2 � (3jfnj2 � (6jfnjjfpj sin��=j%j � � �m ��n ��p

�m; n; 2m� n� m� n �(2jfpj2 � (1jfnj2 � (4jfnjjfpj cos��=j%j � � 2�m ��p ��n

�3; 1; 2� 1 �(1jfpj2Pp��1 ��2� � (3jfnj2Pp��1 ��2� �1 � �n ��m ��p

�(5jfnjjfpjRp��1;�2� �2 � �m ��n � 2�p

�3; 2; 4� 1 �(1jfnj
2Pn��1 ��2� � (2jfpj

2Pn��2 ��1� �1 � �n ��p � 2�m

�(4jfnjjfpjRn��1 � 90�;�2 � 90�� �2 � 2�n ��p

�1; 2; 3� 2 �(2jfpj
2 � (1jfmj

2 � (3jfnj
2 � (4jfmjjfpj cos�1 �1 � �p � 3�m

�(5jfmjjfnj sin�2 � (6jfnjjfpj sin��2 ��1��=j%j �2 � �n � 2�m

�1; 2; 4� 2 �(1jfmj
2Pp��1 ��2� � (3jfnj

2Pp��1 ��2� �1 � �n � 2�m

�(5jfmjjfnjRp��1;�2� �2 � �n � 2�m ��p

�1; 3; 4� 2 �(1jfmj
2Pp��1 ��2� � (2jfnj

2Pp��1 ��2 � 180�� �1 � �n � 3�m

�(4jfmjjfnjRp��1 � 90�;�2 � 90�� �2 � �m ��n ��p
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P2���� �
�j%j ��ijf2�j sin��

�j%j2 � j�if2�j
2�

; (7)

R2���1;�2� �
�j%j sin�1 ��ijf2�j cos�2�

�j%j2 � j�if2�j2�
; (8)

where �, �1, and �2 are particular T�-invariant combi-
nations of the �u.

There are four groupings in the table. The first shows
the five important damped modes and their contribution
to bres when there is only one type of coupling at O��� or
lower and no parametric forcing f2�. In these cases there
is no (leading order) dependence on the forcing phases. In
the second section the same damped modes have been
parametrically forced. The factor 1=j%j is then replaced
by P2���� of (7), a strictly positive oscillatory function
(j%j > j�if2�j for damped modes) with extrema at � �
�90�. Entries in the third section display two types of
coupling, while the final five cases in the table have f2�
forcing as well. Note that equivalent cases can be trivially
generated from those in Table I by switching n and p and
relabeling, for example �m; n; p � n�m�, � � p is
equivalent to �m; n; p � m� n�, � � n.
034502-3
If the undamped problem has a Hamiltonian structure
the results of Table I must be augmented. Specifically, if
for � � 0 Eqs. (4) derive from a Hamiltonian H through
dZ�

j =dt � �i@H =@ ZZ�
j (see, e.g., [13]) then, allowing

for simple rescalings of the dynamical variables, we
have (1 > 0, (2 > 0, (3 � 0, (4 � 0. These relations
mean that for simple couplings (the first two sections of
Table I) the sign of bres is determined, and hence its effect
on patterns involving �res. The � � fm; 2m;m� ng
modes are suppressing, the � � n mode is inconsequen-
tial, and the � � n�m mode is enhancing.

We pursue the implications of Table I by examining
two cases relevant to recent experiments on multifre-
quency forced Faraday waves.We compare our theoretical
predictions with coefficients calculated numerically from
the Zhang-Viñals Faraday wave equations [9], which de-
scribe weakly damped fluids in deep containers. The
calculation (see [12]) gives us the cross-coupling coeffi-
cient b � b0 � bres at the SW bifurcation and is indepen-
dent of the symmetry arguments used here.

First we consider the superlattice-I pattern observed
with two-frequency �m; n� � �6; 7� forcing in the experi-
ments of [14]. The critical wave vectors comprising this
034502-3
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FIG. 2. Effect of � on the stabilizing � � n�m resonance
that selects superlattice patterns [14] with �m; n; p� � �6; 7; 2�
forcing. (a) b��� with the optimal phase � � 90�; the singular
region heralding hexagons at � � 60� is removed. The large dip
near � � 67� is due to the strongly suppressing � � m reso-
nance in the first section of Table I. (b) Close-up of b��� near
� � 22� with � � 90� and � � �90�; the two-frequency
result (dotted line) with fp � 0 is also shown. (c) Spike
magnitude versus � [see Eq. (7)]. For these calculations
jfnj=jfmj � 0:75, jfpj=jfmj � 0:1. The rescaled fluid parame-
ters (see [10]) in the Zhang-Viñals equations are � � 0:08,
G0 � 1:5.
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pattern lie at the vertices of two hexagons, one rotated by
an angle �h with respect to the other. It was shown in [12]
that the experimentally observed angle of �h ’ 22� is
related to a resonant triad at � ’ 158� (�180� � 22�)
involving the � � n�m mode. This is the most intrigu-
ing of the damped modes because it gives bres > 0 and
thus acts as a selection mechanism. Table I indicates how
to enhance this effect: parametrically force the damped
mode using �m; n; 2n� 2m� � �6; 7; 2� forcing and
choose the correct phase. Figure 2(a) shows b��� for � �
90�, which optimizes the stabilizing effect at �h ’ 22�.
Figure 2(b) shows that parametrically forcing the � �
n�m mode with this phase quadruples the stabilizing
impact with respect to the two-frequency case used in the
experiments. If the wrong phase (� � �90�) is chosen,
the effect of the resonance will actually be diminished
compared to the two-frequency case. Figure 2(c) shows
the sinusoidal dependence of bres on �, in excellent agree-
ment with our predictions.

As a second example, we consider recent experimental
results on quasipatterns. It was reported in [15] that
eightfold quasipatterns, which were distorted and diffi-
cult to observe with �m; n� � �3; 2� forcing, became
dramatically cleaner and more robust with �m; n; p� �
�3; 2; 4� forcing. An explanation for this is provided by
Table I. Specifically, from the dispersion relation, we find
that the � � 1 mode forms a resonant triad with the
critical modes with associated angle �res � 43�. This is
nearly the angle present in the distorted (3,2)-forced
quasipatterns in [15]. Table I indicates that with �3; 2; 4�
forcing there is a positive (2jf4j

2 contribution to bres.
Numerical investigations reveal that the stabilizing spike
in b��� becomes broader with increasing � [16], making it
reasonable to expect that for the relatively large damping
of the experiments the stabilization extends to the 45�

angle associated with the perfect eightfold quasipattern.
034502-4
This Letter demonstrates how multifrequency forcing
may be used to control certain resonant triad interactions
relevant to pattern formation in spatially extended, para-
metrically forced systems. In general, the influence of
damped, resonant modes depends on particular combina-
tion(s) of forcing phases. Using the ‘‘proper’’ phase
greatly enhances resonance effects while the ‘‘wrong’’
phase can actually reduce them. Although we have gone
to the limit of weak damping and forcing to obtain these
results, we emphasize that there is still a preferred phase
even for higher damping [16]. We applied our results to
Faraday waves, where many experiments are available
(see, e.g., [17]), but we expect the framework we devel-
oped here will be useful for studying and controlling
other systems such as those in nonlinear optics [18].
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