
P H Y S I C A L R E V I E W L E T T E R S week ending
16 JULY 2004VOLUME 93, NUMBER 3
Dripping-Jetting Transitions in a Dripping Faucet

Bala Ambravaneswaran, Hariprasad J. Subramani, Scott D. Phillips, and Osman A. Basaran*
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA

(Received 20 December 2003; published 15 July 2004)
034501-1
Fascinating dynamics is known to result when the flow rate Q at which water drips from a faucet
varies. Starting with simple (period-1) dripping, the system transitions as Q increases to complex
dripping, where it exhibits period-n (n � 2; 4; . . . ) and chaotic responses, and then jets once Q exceeds a
threshold. New experiments and simulations show that high viscosity (�) liquids, e.g., syrup, transition
directly from simple dripping to jetting as Q increases. Phase diagrams showing transitions between
simple and complex dripping and jetting in �Q;�� space are developed. Values of Q for transition from
dripping to jetting are estimated from scaling arguments and shown to accord well with simulations.
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FIG. 1. Regimes of drop formation. (a) Dripping with satel-

about the system’s nonlinear response [1,9,11,12]. The
other experimental approach, which is typically used

lite formation, (b) dripping without satellite formation, and
(c) jetting. The flow rate increases from left to right.
Water dripping from a leaky faucet [1], ink being
squirted from an ink-jet nozzle [2], a DNA microarray
being deposited on a biochip [3], and microencapsulation
[4] are common examples of situations involving drop
formation [5]. In each case, many drops in sequence are
formed from a nozzle, about one drop per second in the
case of the ordinary leaky faucet and thousands of drops
per second in the case of the versatile ink-jet printer.
Figure 1 shows schematically the evolution of the dynam-
ics with increasing flow rate Q when a Newtonian liquid
of viscosity � such as water flows at a constant flow rate
from a tube of radius R into air. For small Q, primary
drops as well as much smaller satellites form periodically
in time, as shown in Fig. 1(a) [6–8]. At a critical value of
Q, satellites cease to form and simple, period-1 dripping
ensues, where every drop is the same, as shown in
Fig. 1(b). As Q is increased further, simple dripping gives
way to complex dripping, where nonlinear dynamical
phenomena such as period doubling, chaos, and hysteresis
are observed [1,9]. For sufficiently large values of Q,
dripping gives way to jetting, where drops detach from
the ends of long columns of liquid far downstream of the
tube exit, as shown in Fig. 1(c) [9,10]. The goals of this
Letter are to answer the long-standing questions of how
the faucet’s response would change if a high viscosity
liquid such as syrup were used in lieu of water and
whether small changes in � result in large changes in
the faucet’s response.

Since Shaw’s [1] pioneering work inaugurating two
decades of studies of leaky faucets, experiment, theory,
and computation have been used to gain insights into
dripping. Two sorts of experimental approach have been
utilized to date. One of these has focused on measuring
time intervals between drops, t1; t2; . . . ; ti; . . . , where ti is
the time interval between the ith and �i� 1�th drops [1,9].
Time interval data are then examined through time return
maps, where each point in the map is determined by the
ordered pair �tn; tn�1� for some n, to make inferences
0031-9007=04=93(3)=034501(4)$22.50 
along with drop counting, utilizes high-speed imaging
to capture the dynamics of formation of many drops in
sequence [9,12]. Complementing the early experimental
works in the field, several workers have used simple
theories based on spring-mass models to surmise the
faucet’s response [1,13,14]. Recently, researchers have
started to use computational approaches to predict the
formation of hundreds of drops in sequence. These [8,9]
have relied on solving one-dimensional (1D), slender-jet
approximations to the Navier-Stokes (NS) equations de-
veloped by Eggers and Dupont [15] or analogous 1D
approximations [11,14]. As numerically solving the NS
equations takes about 100 times longer than solving the
1D model equations, the former approach has not been
used to date in computing the dynamics beyond the for-
mation of a few drops [7,16,17].

Aside from exploring the range of nonlinear dynamical
phenomena that occur for a particular liquid issuing
from a given tube as Q is varied, several papers have
addressed, albeit only partially, the equally important
issue of identifying the conditions for transitions to
occur between various flow regimes for liquids of widely
2004 The American Physical Society 034501-1
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FIG. 2. Computed variation with We of three quantitative
measures of the dynamics for detecting transition from drip-
ping to jetting. Here Oh � 0:01 and G � 0:5.
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disparate properties. For example, Ambravaneswaran
et al. [8] have determined the variation with viscosity
of the critical value of Q, Qc, beyond which satellites no
longer form. Zhang [7] has determined Qc in the limit of
small �. The transition from dripping to jetting has been
studied for over a century, unfortunately before good
understanding of nonlinear dynamics was available,
when liquid drops form in air [18] as well as in another
liquid [19]. Recently, Clanet and Lasheras [10] have de-
veloped an analytical expression for Qc in the inviscid
limit. Therefore, a major goal of this Letter is to develop
phase diagrams that show transitions between simple
and complex dripping and jetting in �Q;�� space.
Remarkably, a quantitative criterion for the onset of jet-
ting is still lacking. Many authors use qualitative criteria
to decide when a liquid is no longer dripping but jetting.
For example, Clanet and Lasheras [10] employ the ad hoc
convention that the liquid is jetting when Ld � 20R,
where Ld is the limiting length or the drop length at
breakup [cf. Fig. 1(b)]. Unfortunately, this criterion fails
for high viscosity liquids, as their Ld can be of O (100R)
or larger even when Q ! 0 [6,8]. Quantitative criteria
to determine the onset of jetting are also developed in
this Letter.

Here the dynamics of the leaky faucet is analyzed both
computationally and experimentally. The computations
rely on solving the 1D slender-jet equations for the shape
of a drop of an incompressible Newtonian liquid forming
out of a tube of outer radius R and negligible wall thick-
ness and for the axial velocity within the drop
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where t is the time, h�z; t� is the drop radius at a distance z
from the tube exit, vz�z; t� is the axial velocity, and H is
the mean curvature. Equations (1) and (2) are already
dimensionless, as length is measured in units of R and
time is measured in units of

���������������
�R3=�

p
, where � is the

density and � is the surface tension. Three dimensionless
groups govern the dynamics. Two of these, the Ohnesorge
number Oh and the Bond number G, appear in Eq. (1),
and the third, the Weber number We, arises when a plug
flow velocity profile is imposed at the tube exit in the 1D
formulation [8]. These groups are defined as Oh �
�=

�����������
�R�

p
, G � �R2g=�, where g is the gravitational

acceleration, and We � �U2R=�, where U � Q=�R2.
Equations (1) and (2) are solved subject to the boundary
conditions that (i) at z � 0, h � 1 and vz �

��������
We

p
, and

(ii) at z � L�t�, where L�t� is the instantaneous length of
the drop, h � 0 and vz � dL=dt. The initial condition is a
static pendant hemispherical drop, viz., h �

��������������
1� z2

p
and
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vz � 0 for 0 
 z 
 1. The system of Eqs. (1) and (2) is
solved using the finite element method [8].

In the experiments, a liquid is driven at a constant flow
rate through a tube by a Sage MP362 syringe pump. A
high-speed Kodak Ektapro imager is employed to visual-
ize the dynamics. Liquids used in the experiments include
water, glycerol-water mixtures at various concentrations
of glycerol, and silicone oils. By varying drop liquids,
tube radii, and flow rates, the following ranges of the
dimensionless groups have been accessed: 3� 10�3 

Oh 
 2, 0:31 
 G 
 0:97, and 0 
 We 
 O�1�.

Two gross flow transitions that arise as We is increased
are of interest here. The first, which signals the transition
from simple dripping [cf. Fig. 1(a)] to complex dripping
and occurs when We � Wed, can be detected as ex-
plained earlier. The second, which signals the transition
from dripping to jetting and occurs when We � Wej,
turns out to be easily detectable because certain measures
of the dynamics, as shown in Fig. 2, undergo sudden and
large changes at the same time that the observed dynam-
ics transitions to that depicted in Fig. 1(c). As shown in
Fig. 2, the measures that undergo sudden and large in-
creases (decreases) are (a) the dimensionless limiting
length Ld=R; (b) the ratio of the distance Ls between
the centers of mass of the drop that is about to form and
the previously formed drop [cf. Fig. 1(b)] and Ld, viz.
Ls=Ld; and (c) the ratio of the volume of the drop that is
about to form, Vd, to that of the drop that is pendant from
the tube, Vp, viz. Vd=Vp [cf. Fig. 1(c)].
034501-2
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Figure 3 depicts a phase or an operability diagram in
�We;Oh� space, i.e., dimensionless �Q;�� space, that
shows computationally and experimentally obtained
curves that identify locations in the parameter space
where the dynamics transitions from one regime to an-
other. Given a liquid with properties �, �, and �, and a
tube of radius R, which then determine Oh and G, the flow
rate (We) is slowly increased from zero [9]. As We
increases, the system may transition from simple to com-
plex dripping when We � Wed, which for each liquid-
tube pair then identifies a point �Wed�Oh; G�;Oh� on a
curve marked as Wed in Fig. 3 that separates the region of
the parameter space where simple dripping occurs from
that where complex dripping occurs. Thereafter, as We is
increased, the system may eventually transition from
dripping to jetting when We � Wej, which then identifies
a point �Wej�Oh; G�;Oh� on a curve marked as Wej in
Fig. 3 that separates the region of the parameter space
where jetting occurs from that where dripping occurs.
Figure 3 shows that computed and experimental results
accord well when Oh � 0:1 and that the computed Wed
curve agrees well with the experimental one for Oh as
small as 0.02. That the computed Wej curve is not quan-
titatively accurate for small values of Oh accords with
Ref. [8], where it is shown that the 1D model becomes less
accurate for low Oh liquids as We increases. Computed
results are not shown for Oh< 0:02, as solutions of NS
equations and experiments with low Oh drops [8,16,17]
show that drop shapes are overturned before pinch-off
and the effects of the reverse flow emanating from the
Oh
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FIG. 3. Phase diagram that shows computationally and ex-
perimentally obtained curves, indicated by (Comp) and (Exp),
respectively, that identify the values of We where the dynamics
transitions from simple to complex dripping, Wed, and from
dripping to jetting, Wej. Here 0:31 
 G 
 0:97.
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pinching necks of drops are felt within the tube, neither of
which can be accounted for by 1D models.

Since a change in viscosity is typically accompanied by
a change in surface tension and density and because the
radii of tubes available to us cannot be varied continu-
ously, in Fig. 3 G, which ideally should be held constant
while Oh is varied, varies modestly by a factor of 3 while
Oh varies by a factor of 1000. Figure 4 shows a computed
phase diagram in �We;Oh� space where G � 0:5. Figure 4
and also Fig. 3 show that when Oh exceeds a critical value
Ohc, a leaky faucet transitions directly from simple drip-
ping to jetting when We � Wej. Thus, high viscosity
liquids do not exhibit complex dripping in contrast to
their low viscosity counterparts.

Figure 4 shows that when G � 0:5, a leaky faucet
exhibits complex dripping when Oh � 0:1 for Wed �
0:12<We<Wej � 0:26. A detailed study of the faucet
for this set of parameters is reported in Ref. [9], where it
is shown that the system exhibits period-2, period-4,
period-1, and hysteretic responses as We is varied.
Figure 4 shows that Oh, or equivalently � holding every-
thing else constant, must be increased by more than a
factor of 5 for the system not to exhibit complex dripping.
Moreover, Ambravaneswaran et al. [9] and Yildirim and
Basaran [20] have shown that Oh, or �, must be de-
creased by roughly the same amount for the system to
exhibit chaotic dripping.

Figure 5 shows computed snapshots of the dynamics
when G � 0:5 at two Oh values. In Figs. 5(a) and 5(b),
Oh � 0:01 and the transition from dripping to jetting at
this value of Oh occurs when We � Wej � 0:8. For the
cases shown in Figs. 5(c) and 5(d), Oh � 0:5, which is the
Ohnesorge number at which the triple point in Fig. 4
Oh
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FIG. 4. A computed phase diagram in �We;Oh� space when
G � 0:5. The curves Wed and Wej have the same meanings as
in Fig. 3. When Oh > Ohc, the leaky faucet transitions directly
from simple dripping to jetting.
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FIG. 5. Computed snapshots of the dynamics when G � 0:5.
(a) Oh � 0:01 and We � 0:73, dripping; (b) Oh � 0:01 and
We � 0:98, jetting; (c) Oh � 0:5 and We � 0:07, dripping; and
(d) Oh � 0:5 and We � 0:071, jetting.
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occurs and where the system transitions directly from
dripping to jetting when We � Wej � 0:0705.

A physical understanding of how the critical Weber
number for transition from dripping to jetting Wej varies
with the Ohnesorge number Oh (cf. Fig. 4) can be devel-
oped by comparing the relevant characteristic time scales
of the dynamics. Previous studies of pinch-off of fluid
interfaces have shown that the relevant time scale for
capillary breakup depends on the value of the
Ohnesorge number [21]. Thus, the time scale for capillary
breakup scales as tc �

���������������
�R3=�

p
when Oh  1, tv �

�R=� when Oh � 1, and t� � �3=���2� when Oh� 1
[21]. In all cases, the time scale for the flow tf scales as
R=U. It is reasonable to expect that the transition to
jetting should occur when the flow beats out one or
another of the three time scales for capillary breakup.
Thus, when Oh  1, tf < tc and hence We > cI, where cI
is an O�1� constant, for jetting to occur. On the other
hand, when Oh � 1, tf < tv and hence Ca � Oh

��������
We

p
>

cV , where Ca � �U=� is the capillary number and cV is
another O�1� constant, for jetting to occur. However,
when Oh� 1, tf < t� and hence CaOh2 � Oh3

��������
We

p
>

cIV , where cIV is yet another O�1� constant, for jetting
to occur. Figure 4 shows that at low Oh, jetting occurs
when Wej is O�1�, in accord with this simple theory.
Figure 4 also shows that at high Oh, Wej decreases as
Oh increases, also in accord with the theory, and com-
puted results show that Wej � Oh�2. Figure 4 further
shows that at intermediate Oh, Wej falls sharply as Oh
rises, once again in agreement with the theory, and com-
puted results show that Wej � Oh�6.

Tube wall thickness [6] or outlet type [12] are impor-
tant parameters for which 1D models cannot account.
Experiments have also been carried out to study the effect
034501-4
of the ratio of the inner tube radius to the outer radius Tr
on Wed and Wej using water. It has been found that
varying Tr does not significantly affect Wed but a small
decrease in Tr results in an appreciable increase in Wej.

According to the foregoing results, while low-viscosity
liquids such as water may exhibit complex nonlinear
dynamical responses, replacing water by high-viscosity
liquids may eliminate all the interesting responses that a
leaky faucet may exhibit. While increasing � can make
the faucet’s response less nonlinear, certain effects such
as non-Newtonian rheology [22] and electric fields [23]
are likely to increase the complexity of its response
because they introduce new nonlinearities. The results
of a study examining the effects of shear thinning and
extensional thickening will be reported shortly [20].
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