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Dynamical properties of discrete solitons in nonlinear Schrodinger lattices with saturable nonline-
arity are studied in the framework of the one-dimensional discrete Vinetskii-Kukhtarev model. Two
stationary strongly localized modes, centered on site (A) and between two neighboring sites (B), are
obtained. The associated Peierls-Nabarro potential is bounded and has multiple zeros indicating strong
implications on the stability and dynamics of the localized modes. Besides a stable propagation of mode
A, a stable propagation of mode B is also possible. The enhanced ability of the large power solitons to
move across the lattice is pointed out and numerically verified.
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Nonlinear discrete systems are recognized in various
fields of physics. The energy transport in molecular
chains [1], optical pulse propagation in waveguide arrays
[2], Scheibe aggregates [3], arrays of Josephson junctions
[4], mixed-valence transition metal complexes [5], the
motion of localized waves on discrete electrical lattices
[6], coupled arrays of nonlinear mechanical pendulums
[7], and photonic crystal waveguides [8] are only some of
the well-known examples from this realm. All of these
share the common phenomenon of nonlinear wave local-
ization giving rise to the existence of intrinsic localized
modes such as discrete solitons. The most interesting and
extensively studied are optical discrete solitons in non-
linear waveguide lattices (see recent review articles [9])
because of their potential applications in designing ulti-
mate fast all-optical devices. The fundamental concept of
light guiding light can be achieved using dynamical
properties of the optical discrete solitons and their inter-
actions. A standard theoretical approach for the descrip-
tion of lattices which consist of equally spaced identical
nonlinear lattice elements is based on the decomposition
of the total field in a sum of weakly coupled modes exited
in each of the waveguides of the lattice. This approach,
known as a tight-binding approximation, often leads to
different versions of the discrete nonlinear Schrodinger
(DNLS) equation. Discrete systems with cubic (Kerr)
nonlinearity, such as the waveguide array in AlGaAs
[10] are well described by the cubic DNLS equation. It is
shown on the example of the one-dimensional (1D)
DNLS lattice that, for a given power, two stationary
localized modes exist [11]: one stable (A) centered on a
waveguide and one unstable (B) centered between two
neighboring waveguides. The existence and stability of
modes A and B for the case of the coupled DNLS model
describing transport of the vibrational energy in crystal-
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line acetanilide are discussed in [12]. The difference of
their energies is attributed to the Peierls-Nabarro (PN)
effective periodic potential generated by the lattice dis-
creteness, originally introduced in the theory of crystal
dislocations [13]. The obtained PN potential is always
negative and proportional to the soliton power. The power
dependent soliton steering [9,10,14,15] is explained with
the PN potential assuming it as the minimum barrier
which must be overcome to propagate a soliton across
the nonlinear lattice [10,11].

The aim of this Letter is to demonstrate that the
dynamical properties of the DNLS lattices with saturable
nonlinearity, such as optical waveguides in photorefrac-
tive crystals, differ considerably from those of the dis-
crete lattices with cubic (Kerr) nonlinearity. This strongly
affects the soliton’s stability properties and its propaga-
tion across the lattice. Similar effects in a quantum DNLS
model are studied in a very recent paper [16].

We begin our study with the 1D DNLS lattice model
with saturable nonlinearity, which represents a discrete
version of the Vinetskii-Kukhtarev equation [17]
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Here U, is the wave function in the nth lattice element
(n=1,...,N)with (Uy,, = U,) for the case of periodic
boundary conditions, K is the coupling constant, and 8 is
the nonlinearity parameter.

The above equation represents a system of linearly
coupled nonlinear differential equations which are not
integrable in the general case but possess two conserved
quantities: Hamiltonian H =Y, [BIn(1 + |U,|?) +
K|U,_, — U,I?] and the number of quanta (power) P =

anUnlz-
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The exact lattice independent constant amplitude solu-
tion of Eq. (1),

U, = ,/B ; Y exp(—ivz), )

is unstable with respect to small modulations. Assuming
perturbations U, * e” ¥ < U, the linear stability
analysis yields the dispersion relation

0O? = 8Ksin?(w/N)[2Ksin*(w/N) — v(1 — v/B)], (3)

which for 22 <0 defines the following instability fre-
quency band:

v € [2Ksin?(7/N), B — 2Ksin*(7/N)]. 4)

This process of modulation instability is responsible
for energy localization and creation of discrete solitons.
Such stationary localized modes can be obtained from
Eq. (1) by assuming solutions in the form U,(z) =
Ff,e ™% and a set of coupled algebraic equations for
the real function f,,,

Bfn

vf, +K(fn+l + fau-1 _2fn)_w

=0. (5

Equation (5) gives two types of strongly localized
modes. The first one (A) centered at the lattice site
n =0, assuming F = A, fo =1, f_, = f,, has a pattern
in the form

U@ = AC. o A L P fA

where the lattice
0,*1,*2,....

For the strongly localized modes satisfying |f,+] <
|f,| for n = 0, we can consider a linear propagation in the
lattice elements with |n| > 1, and the total power P and
Hamiltonian H can be approximately calculated as

Je i (6)

sites are indexed with n =

=A2(7+2—w)2+1
(y+2—w)?—-1

d A?
= + A%) + | | A —
H, = yIn(l + A%) 2yln|:j_l<l Gr2-a)7 >i|

Py

(y+1—w)?

+ 242 ,
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)

where v = B/K, o = v/K, and the soliton amplitude A
is defined by

) _ (y+2—w)? -2
A (y+2—w)w—2)+2 ®)

The second strongly localized mode (B) centered be-
tween two neighboring lattice elements n = *1, assum-
ing F =B, f+, =1, f_, = f,, has a pattern in the form

UP () =B(.., 5 B 1,1, /5 f5 ..
where the lattice sites are indexed with n = =1, *2, ....
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Je " (9)

With a similar procedure as applied for the mode A,
under the assumption |f,| < |f,| for n = 1, we can
approximately calculate the total power P and Hamil-
tonian H for the mode B,

(y+2— w)?

Hp =271n|:l_[<1 + (7+2——w)21>}

j=0
+1- w)?
+op oy (10)
(y+2—w)y+1
and the corresponding soliton amplitude
+2 - +1—-w)—1
B — (y w)(y w) (11)

(y+2—w)(w—1)+1

The difference in energy between these two stationary
localized states for the same power level P, = Py = P
defines the effective PN potential [10,11]

AE,5(P) = H4(P) — Hp(P). (12)

The curve AE,5(P), which is presented in Fig. 1 by a
solid line, shows that the effective PN potential changes
its sign for a critical power P.;, which brings important
implications on the stability properties of the localized
modes (A and B) and soliton steering across the lattice
elements. In the region 0 < P < P,; mode A has a lower
energy than mode B (H, < Hp) for the same power P,
indicating that mode A is stable and mode B is unstable.
For this lower power region this coincides with the results
obtained in [10,11] for the DNLS lattices with a Kerr
nonlinearity. The obtained agrement is expected because
in the small amplitude limit Eq. (1) reduces to the cubic
DNLS equation. However, in the region P > P_; the
situation is the opposite (H, > Hpg): mode B is stable
and mode A is unstable. It means, contrary to the
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FIG. 1. Analytically (solid line) and numerically calculated

PN potential versus soliton power P for discrete lattices with
B =182 and K = 2.
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DNLS lattices with cubic nonlinearity [10,11], a stable
propagation of the discrete soliton centered between the
neighboring lattice elements (B) is possible. The critical
power P, i.e., a zero of the PN potential, represents
marginally stable states for both modes.

The observed PN potential can be explained by a
cascade nature of amplitude saturation in the lattice ele-
ments. The amplitude of the central element for mode A
increases with increasing power level P up to a point
when it reaches the saturation level. A further increase
of P is the result of increasing amplitudes in two neigh-
boring lattice elements (n = *1). Consecutively, when
the amplitudes in the lattice elements (n = *1) saturate,
the amplitudes of the next lattice elements (n = *2)
contribute to the further increase of P. This cascade
process continues with increasing of P, while mode A
becomes less and less localized. The same process takes
place also for mode B but for larger values of P because
two lattice elements saturate simultaneously. The numeri-
cally obtained power dependence of the amplitude in the
central and two neighboring elements for both modes,
shown in Fig. 2, clearly illustrates the cascade nature of
the saturation. This means that increasing P does not lead
to a continuous energy localization into a single lattice
element and decoupling from the rest of the lattice as in
the case of the DNLS lattice with cubic nonlinearity.
Instead, the described cascade saturation takes place
and suppresses an energy localization resulting in the
existence of less and less localized modes as P increases.
However, this explanation indicates the existence of a
bounded PN potential with multiple zeros. The numeri-
cally obtained PN potential, shown in Fig. 1 by a dashed
line, confirms our predictions. A bounded PN potential
with multiple zeros (P, P.y, P, ...) is obtained, where
P, coincides with the analytically predicted value. The
other zeros cannot be obtained by the described analyti-
cal approach since the assumption |f,; ;| << |f,| used for

Amplitude

FIG. 2. Amplitude in the central lattice element and its
neighbors for both localized modes as a function of soliton
power P for discrete lattices with N = 101, 8 = 18.2, and
K=2.
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deriving the analytical expressions (7) and (10), fails for
large P.

According to the scenario described in Refs. [10,11]
that the two modes A and B can be approximately viewed
as dynamical states of the same moving localized mode,
one can expect that the shape of the PN potential strongly
affects the power dependent soliton steering across the
lattice elements. The boundedness of the PN potential
barrier brings the general conclusion that the ability of
large power solitons to move across the lattice is consid-
erably higher than in the case of DNLS lattices with cubic
nonlinearity. The large power solitons forced to move
sideways may propagate or may be trapped inside the
potential barrier exhibiting oscillations of the soliton
velocity. Moreover, the existence of zeros of the PN
potential indicates the possibility for the existence of
unlimited soliton steering across the lattice. However,
modes A and B represent pure solitons without internal
oscillations but with different self-frequencies (w,, wp)
for the fixed power P. During the periodic transition of
the moving mode through modes A and B, the self-
frequency oscillates between w, and wg. Therefore, the
moving modes are not pure solitons but breathers with an
additional internal mode of freedom. In spite of this, we
can conclude that the PN barrier is only one among other
factors that could influence the mobility effect.

In order to verify our analytical results for the stability
of the modes A and B, as well as to estimate the influence
of the PN potential barrier on the mobility of the solitons
across the lattice elements, we have performed a set of
numerical simulations of Eq. (1), based on the sixth order
Runge-Kutta procedure with regular checking of the
conserved quantities P and H. In the regions with
negative PN potential barrier we observe a stable propa-
gation of mode A, while the unstable mode B quickly
relaxes into the stable mode A. In the regions with
positive PN potential barrier we observe a stable propa-
gation of mode B [Fig. 3(a)], while the unstable mode A
quickly relaxes into the stable mode B. For the critical
power (P, P.y, P, ...) we observe propagation of both
modes.

Solitons are numerically forced to move sideways by
the introduction of a small phase difference tilt between
adjacent lattice elements. The observed dynamics is com-
plex and strongly depends on soliton power and intro-
duced phase difference. Results confirm our conclusion
that a moving mode is a breather type, and also our
prediction of the enhanced mobility of large power soli-
tons. Here, to illustrate our conclusions, we present a few
of the most instructive examples. We launch large power
solitons with P = 21.63 > P_;, where mode A is unstable
and mode B is stable (opposite situation than for the
DNLS lattices with cubic nonlinearity). The correspond-
ing example of stable propagation of mode B is shown in
Fig. 3(a). Soliton steering can be initiated from unstable
mode A by introducing a small phase difference. This is
consistent with the experiments with DNLS lattices with
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FIG. 3. [Illustration of the soliton dynamics with P = 21.63 in
the lattice with N = 101, 8 = 18.2, and K = 2. (a)—(d) repre-
sent gray scale maps of the intensity profiles over the lattice for
(a) stable propagation of the mode B, and soliton steering
initiated from mode A with different initial phase differences:
(b) @ = 0.0027, (c) & = 0.005, and (d) a = 0.0155.

cubic nonlinearity [10] where the soliton steering is ini-
tiated from mode B.

The introduced phase difference increases the H and as
a result we get an initial state with the same P but with H
above the H, of the unstable mode (A). As a consequence
of the conservation of P and H, the energy difference is
transferred partly into the exited internal mode of free-
dom and partly into the kinetic energy enabling soliton
steering across the lattice. Figures 3(b)—3(d) demonstrate
the propagation of solitons across the lattice for three
values of the initial phase difference. The soliton with a
small initial phase difference [Fig. 3(b)] starts to steer,
slows down, and is finally trapped by the potential barrier
composing a complex breather-type localized mode
where the energy mainly oscillates between two lattice
elements. Solitons with a larger initial phase difference
propagate across the lattice with a constant transverse
velocity [Fig. 3(c)]. Further increasing of the initial phase
difference induces soliton steering with a larger trans-
verse velocity [Fig. 3(d)].

In conclusion, we have shown on the example of a 1D
model that dynamical properties of DNLS lattices with
saturable nonlinearity differ considerably from those of
the DNLS lattices with cubic nonlinearity. The most
important difference is the existence of stable discrete
solitons centered between two neighboring lattice ele-
ments (mode B) resulting in an enhanced ability for
soliton steering across the lattice. These properties are
power dependent and can be of interest for developing
new ideas for designing all-optical routing and switching
devices. We further expect that these results will be ex-
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perimentally confirmed with the waveguide lattices fab-
ricated in photorefractive crystals like strontium-barium
niobate (SBN61, Sry¢Bag39Nb,Og). Currently we are
developing such 1D waveguide arrays in SBN using
He ion implantation and photoresist patterning of the
channels.
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