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We present a calculation of the differential two-jet cross section in e�e� annihilation through next-
to-next-to-leading order (NNLO) in the strong coupling constant �s. The calculation is performed
using a new method for dealing with real radiation suggested recently by us. For the first time, the two-
jet event rate is computed directly, without any reference to the inclusive cross section e�e� ! hadrons.
We also calculate the energy distribution of the leading jet in e�e� ! 2 jets and find significant
modifications of the shape of this distribution at NNLO.
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the calculations, given the required precision for an ob-
servable and the kinematic regions in which it is mea-

very easy to write down the corresponding matrix ele-
ment, it is not possible to integrate it numerically over the
High-energy physics will begin to explore a new en-
ergy frontier when the Large Hadron Collider (LHC) at
CERN turns on in 2007. Our understanding of physics at
very small distances will dramatically improve. However,
a detailed investigation of the new physics we discover
will require a careful study of standard model (SM) back-
grounds, detector responses, and other similar issues.
Since many layers separate interesting physics from raw
experimental data, a dedicated effort is required to fully
utilize LHC results. There have been significant advances
towards this goal in the past few years; we now have
an increased understanding of parton distribution func-
tions and jet algorithms, improved Monte Carlo event
generators, methods for automating next-to-leading order
calculations with a large number of external legs and,
finally, new technology for next-to-next-to-leading order
(NNLO) computations.

NNLO calculations are certainly not required for all
processes at the LHC or existing colliders; however, there
are a few situations in which NNLO calculations are
highly desirable. These include processes for which the
one-loop corrections are abnormally large (e.g., the pro-
duction of the SM Higgs boson at hadron colliders [1]) or
for measurements in which high experimental precision
is either achieved (e.g., the �s determination from the
three-jet event rate in e�e� annihilation [2] or the W
mass measurement at the Fermilab Tevatron) or expected
(e.g., W and Z boson production at the LHC [3]). These
calculations should also inform us how accurate NLO
calculations really are, beyond the standard checks of
stability with respect to renormalization and factoriza-
tion scales variations. We should learn to estimate the
significance of NNLO corrections without performing
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sured. For this purpose, exclusive NNLO calculations are
needed, since experimental cuts on the final state can
have a strong impact on the convergence of perturbative
expansion. Unfortunately, not a single calculation of a
fully differential QCD observable at NNLO has been
performed, either for lepton or hadron colliders.

In this Letter we remedy this situation and present the
calculation of the two-jet cross section in e�e� annihi-
lation at NNLO in perturbative QCD. Although jets and
their properties have been studied very extensively at
lepton colliders [4], we believe that such calculation is
important for the following reasons: (i) it is the first-ever
calculation of a fully differential observable at NNLO;
(ii) although the total rate for two-jet events in e�e�

annihilation is known through NNLO from indirect cal-
culations, our results for distributions in two-jet events
are new; (iii) this calculation is possible because of a new
method we recently suggested for handling real radiation
in hard processes [5]; it is important to demonstrate its
efficiency by applying it to a nontrivial example.

There is a strong correlation between the complexity of
higher order calculations and the level of exclusiveness
desired. Traditionally, it was thought that calculations at
higher orders are difficult because of multiloop integrals.
A significant effort therefore went into developing flex-
ible, easily automated methods for performing higher
loop computations [6]. As a result, calculations up to
two loops are no longer prohibitively difficult; for ex-
ample, the two-loop virtual corrections for 1 ! 3 and all
partonic 2 ! 2 processes at hadron colliders have been
computed [7]. Surprisingly, the major obstacle in obtain-
ing differential results at higher orders are tree-level
processes with additional final-state partons. While it is
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restricted (exclusive) phase space without first extracting
the singular structure of the integrand in the soft and
collinear limits. Analytic integrations also become ex-
tremely difficult because of the arbitrariness of final-state
cuts. This problem has been successfully solved at NLO
using both the slicing and dipole subtraction methods
[8,9]. Attempts have been made recently to generalize
the dipole formalism to NNLO [10]; so far, they have
not completely succeeded. It is therefore productive to
look for an alternative method of dealing with multi-
particle final states in the presence of arbitrary con-
straints on their phase space.

What are the ideal features of such a method? Given
the complexity of higher order calculations, it should
satisfy the following requirements: (i) the singularities
should be extracted in an algorithmic fashion; (ii) the
method should be easy to automate; (iii) it should be
easily generalizable, at least in principle, to arbitrary
numbers of partons in the final state; (iv) the method
should work efficiently in the presence of arbitrary con-
straints on the final state; (v) it should lead to a fast and
accurate numerical evaluation of physical quantities.

We have proposed such a method recently in [5]. We
now briefly describe its salient features. Consider a per-
turbative tree amplitude M with n particles in the final
state. Its contribution to the differential cross section can
be written as

d	�n� �
Z

d�njMj2J�fpig�; (1)

where d�n denotes the n-particle phase space and J�fpig�
imposes restrictions on the final state (e.g., the jet algo-
rithm) which define the experimentally observed process.
Throughout this Letter we use dimensional regulariza-
tion (with d � 4� 2� dimensions) for both infrared and
collinear divergences. If all particles are well separated
(resolved), jMj2 is finite; however, when the integration
in Eq. (1) is attempted, there are divergences associated
with soft and collinear kinematic configurations. A direct
numerical integration of Eq. (1) is therefore not possible.

In Ref. [5] we demonstrated that by mapping the in-
variant masses onto algorithmically chosen new integra-
tion variables, it is possible to extract the � poles
explicitly. We then obtain an expansion in �,

d	�n� �
X2�n�2�

k�0

dFk

�2�n�2��k
�O���; (2)

where the coefficients dFk are well defined,
�-independent multidimensional integrals for a generic
function J . It needs to be specified only at the stage of
numerical evaluation. This allows us to derive results for
arbitrary jet algorithms and experimental observables.

It is relatively easy to derive such an expansion at NLO,
where at most one parton can become unresolved. In this
case, trivial mappings [5] of the phase-space variables
onto variables with range from 0 to 1 produce integrals
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with the following singular structure:

I1 �
Z 1

0
dxdyx��1y��1J�x; y�: (3)

All singularities in the above integral can be extracted by
writing x��1 � ��x�=�� 
1=x�� � �
ln�x�=x�� � . . . ,
for both x and y in the integrand.

Beyond NLO, two or more partons may become un-
resolved, which gives rise to a more complicated struc-
ture of overlapping singularities. Typically, we find
integrals similar to

I2 �
Z 1

0
dxdy

x�y�

�x� y�2
J�x; y�: (4)

The procedure described above does not work because the
singularities are not factorized. To solve this problem, we
apply the technique of sector decomposition [5,11]; we
divide the integration region in Eq. (4) into patches with a
definite ordering of the integration variables (x < y and
y < x) and reweight all variables in each patch so that the
integrations again range from 0 to 1. This leads to facto-
rization of the singular limits. This procedure can be
completely automated. The same method should, in prin-
ciple, work for any number of particles in the final state,
both massless and massive, and for any restrictions on the
final-state phase space.

For e�e� ! 2 jets through NNLO, the largest multi-
plicity of particles in the final state is 4 (e.g., e�e� !
q 
qqgg). A parametrization of the 1 ! 4 particle phase
space in terms of five independent variables which is
suitable for sector decomposition and extracting infrared
divergences was given in [5]. In the same reference, we
gave a more detailed description of the method and
considered a number of relatively simple examples. In
this Letter we apply the method to a fully realistic and
nontrivial problem—the calculation of the e�e� ! 2 jets
cross section at NNLO. Traditionally, the inclusive two-jet
rate is calculated at NNLO indirectly, by first computing
the total inclusive cross section for e�e� ! hadrons and
then subtracting from it the e�e� ! 4 jets and e�e� ! 3
jets cross sections at LO and NLO, respectively. This
Letter presents the first direct calculation of the two-jet
rate at NNLO. Using our method, we can also obtain
differential results at NNLO, which cannot be derived
indirectly. We illustrate this by computing the energy
distribution of the leading jet in e�e� ! 2 jets through
NNLO.

The cross section for e�e� annihilation into hadrons
through order O��2

s� can be written as

	 � 	0

�
�j;2 �

�
�s

�

�
�C�2�

1 �j;2 � C�3�
1 �j;3�

�

�
�s

�

�
2
�C�2�

2 �j;2 � C�3�
2 �j;3 � C�4�

2 �j;4�

�
; (5)

where 	0 � 4��QED

P
qQ

2
q=s is the tree-level cross sec-

tion for e�e� ! q 
qq,
���
s

p
is the center of mass energy,
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�s � �s�s� is the MS (modified minimal subtraction
scheme) QCD coupling constant, and the coefficients
C�j�
i describe jet cross sections in various orders in per-

turbation theory, as indicated by the Kronecker sym-
bols. From inclusive calculations of the cross section
[12], we find

C�2�
1 � C�3�

1 � 1;

C�2�
2 � C�3�

2 � C�4�
2 �

365

24
� 11��3� �

�
11

12
�

2��3�
3

�
Nf

 1:99� 0:115Nf; (6)

where Nf is the number of massless fermion flavors.
An important goal of this Letter is the calculation of

the coefficient C�2�
2 , the NNLO correction to the two-jet

production rate. For this, we need the two-loop virtual
correction to e�e� ! q 
qq, the one-loop correction to the
e�e� ! q 
qqg process, and the tree-level processes
e�e� ! q 
qqgg and e�e� ! q 
qqq1 
qq1. We also require the
coupling constant renormalization of the NLO result. At
order O��2

s�, all of these processes contain divergent
contributions to the two-jet cross sections; the highest
singularity is 1=�4. The singularities cancel when indi-
vidual contributions are combined to form a physical
observable.

The two-loop virtual corrections to e�e� ! q 
qq are
well-known [13]. We have outlined above how the tree-
level four-parton final state is handled in our approach.We
note that a global parametrization of the four particle
phase space, which we used in [5] for the Nf terms, leads
to large analytic expressions which are difficult to evalu-
ate numerically. We found it much more convenient to
select a different parametrization for the invariant
masses in each individual term, thereby reducing the
number of sector decompositions required to extract the
singularities. This choice of parametrization can be done
automatically once the basis topologies appearing in the
matrix element are identified. With this clever choice of
parametrization, the size of the computer code for the
fully differential NNLO e�e� ! 2 jets process is not
much larger than what we have found in simpler examples
in [5]. The required CPU time is also not very large; to
achieve the precision on the jet rates presented in this
Letter, about 4 h are needed on a PC with a 3 GHz
Pentium 4 processor.

We now briefly comment on the calculation of the one-
loop corrections to the q 
qqg final state. It might seem that
a different technique is needed to handle this contribu-
tion, since a virtual loop integration is involved. However,
this is not the case [5]. Once the virtual loop integrals are
expressed through Feynman parameters, they can be
treated identically to phase-space integrals. We found it
convenient to express them through standard hyper-
geometric functions and use the one-dimensional integral
representation for the hypergeometric functions, together
with the three-parton phase-space parametrization.
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Although this procedure is not necessary, it is useful
because it provides an economical input for sector
decomposition.

Since our approach to the problem is numerical, in-
cluding the cancellation of 1=� poles, we must consider
issues of numerical accuracy. The simplest check is the
comparison of the direct and indirect evaluations of the
total two-jet event rate. The indirect result is obtained by
taking the difference between the O��2

s� contribution to
the inclusive cross section, given in Eq. (6), and subtract-
ing from it the four-jet cross section at LO and the three-
jet cross section at NLO. Both of these quantities are
computed in our code. We use the JADE algorithm [14]
to identify jets in the final state. However, the jet defini-
tion is an independent subroutine in our code that can be
trivially changed if desired. Choosing the jet separation
parameter for the JADE algorithm ycut � 0:1, we obtain

C�2�;indirect
2 � ��49:2� 0:4� � �1:7974� 0:0011�Nf; (7)

where the errors denote our integration uncertainties for
the three- and four-jet cross sections. A direct computa-
tion of the same quantity yields

C�2�
2 �

10�6

�4
�

10�4

�3
�

10�3

�2
�

��4� 4� � 10�2

�

�
��0:3� 4� � 10�4

�
Nf � ��49:8� 0:4�

� �1:798� 0:002�Nf: (8)

We have included the integration errors found during an
actual run for the 1=� poles to demonstrate the level of
cancellation; the magnitudes indicated for the higher
poles are typical of results found using our code.
Comparing Eqs. (7) and (8), we conclude that our pro-
gram provides a precision on the finite part of the NNLO
correction to the two-jet rate better than 1%. We also
conclude that our numerical cancellation of 1=� poles
works very efficiently. These features do not change sig-
nificantly when the jet separation parameter ycut is varied.

Our approach permits us to also compute differential
distributions in addition to the total rate. As an example,
we present below the energy distribution of the leading jet
in two-jet events at NNLO. At leading order, this distri-
bution is simple; since two massless quarks are produced,
each jet contains half of the total energy. The distribution
becomes more interesting at NLO, when it becomes pos-
sible for one of the jets to have an invariant mass different
from zero. At NNLO, configurations when the invariant
masses of both jets are different from zero appear for the
first time. We compute this distribution by a simple modi-
fication of the jet function; after an event is identified as a
two-jet event, the energies of the two jets are computed
and the jet with the largest energy is identified. This
number is then stored in the appropriate bin of a histo-
gram. The corresponding bin-integrated energy distribu-
tion is shown in Fig. 1 for ycut � 0:1, Nf � 5, and
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FIG. 1 (color online). Bin-integrated energy distribution for
ycut � 0:1. The fractions of events in each energy bin are
shown. The dotted histogram denotes the LO result, the dashed
histogram the NLO result, and the solid histogram the NNLO
result.
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�s � 0:121. The distribution is significantly distorted by
NNLO QCD corrections; the corrections are large for
this ycut, and many situations that look like three- and
four-jet events are identified as two-jet events. Smaller
ycut choices lead to large logarithms in the perturbative
expansion that invalidate the fixed order result.

In conclusion, we have presented the first calculation of
the NNLO corrections to a fully differential observable in
QCD. We have demonstrated our approach using the non-
trivial example of e�e� ! 2 jets. We have computed the
NNLO corrections to the energy distribution of the two
jets in e�e� annihilation and have shown that the shape
of the distribution changes when the NNLO corrections
are included. Our method allows other phenomenologi-
cally interesting distributions in two-jet events to be
easily computed; these will be discussed elsewhere.
Since our approach is fully numerical, we have presented
convincing evidence that reasonable precision and control
of numerical stability can be achieved. The method we
developed for this calculation is quite flexible; it general-
izes straightforwardly to an arbitrary number of partons
in the final state, both massive and massless. Given un-
limited computing resources, it provides a complete so-
lution to the problem of real radiation at higher orders in
perturbative QCD. In practice, significant effort and some
ingenuity will be required to apply it to more complicated
processes of direct phenomenological relevance. We look
forward to this challenge.
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