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In spacetimes with compact dimensions, there exist several black object solutions including the black
hole and the black string. They may become unstable depending on their relative size and the length
scales in the compact dimensions. The transition between these solutions raises puzzles and addresses
fundamental questions such as topology change, uniquenesses, and cosmic censorship. Here, we
consider black strings wrapped over the compact circle of a d-dimensional cylindrical spacetime. We
construct static nonuniform strings around the marginally stable uniform string. First, we compute the
instability mass for a large range of dimensions and find that it follows an exponential law �d, where
� < 1 is a constant. Then we determine that there is a critical dimension, d� � 13, such that for d � d�
the phase transition is of first order, while for d > d� it is, surprisingly, of higher order.
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what state is accessed by the classically decaying GL where A, B, and C depend on r; z only. When these
In 4d, the static uncharged black hole (BH) solutions
with a given mass are stable and unique. However, the
fundamental theory of nature which, as now believed by
many, is the string/M-theory, contains more than four
dimensions. In this situation, the phase space of massive
solutions of general relativity is much more rich and
varied. Several phases of solutions exist and transitions
between them may occur. For concreteness, we consider
the background with a single compact dimension, i.e.,
with the topology of a cylinder, Rd�2;1 � S1. The coor-
dinate along the compact direction is denoted by z and its
asymptotic length is L. The problem is characterized by a
single dimensionless parameter:

� :� GdM=Ld�3; (1)

where Gd is the d-dimensional gravitational constant and
M is the mass.

Gregory and Laflamme (GL) [1,2] discovered that the
uniform black string (i.e., a d� 1 Schwarzschild solution
times a circle, which is the large mass solution) develops a
dynamical instability if the compactification radius is
‘‘too large.’’ Their interpretation was that the string de-
cays to a single localized BH. In this case, the horizon
pinches off and the central singularity becomes ‘‘naked.’’
By now there is a rapidly growing amount of the literature
on the subject [3–21]. In particular, the scenario of GL
was questioned by Horowitz and Maeda (HM) [3] who, on
grounds of the classical ‘‘no tear’’ property of the hori-
zons, argued that horizon pinching is impossible and,
hence, a decaying string settles to another stable
phase —a nonuniform black string (NUBS). However,
(partial) evidence against that has come from Gubser
[4] who in 5d studied perturbative NUBSs emerging
from the GL point. He showed that such solutions are
too massive and have too low an entropy to serve as an
end state of a decaying critical string. Namely, the tran-
sition to this NUBS is of first order and it is again unclear
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string. Wiseman [7] reached the same conclusion by con-
structing the NUBS solutions numerically in 6d in a fully
nonlinear regime. (In 5d, [12,13] could be regarded as
additional circumstantial evidence contra the HM
claim.) However, in this Letter we discover that the
transition to NUBS can be smooth depending on d.

Generalizing Gubser’s 5d procedure [4], which is a
version of the ‘‘marginal stability’’ method, we construct
numerically d-dimensional static perturbative NUBS
solutions around the GL point. First, we note that the
GL instability mass exhibits to good accuracy an expo-
nential scaling with d. Moreover, we find that there is a
critical dimension, d� � 13, below which the uniform-
nonuniform strings transition is of first order. That is, it is
qualitatively similar to what Gubser has found in 5d.
However, above d� the NUBS solutions emerging from
the instability point have a lower mass and a larger
entropy than those of the critical string. Namely, the
transition between the phases can be continuous. (This
is consistent with the prediction of a critical dimension
d̂d � 10 at the ‘‘merger point’’ of this system, where the
string and the BH branches merge [6].)

Hence, the NUBS state is accessible by an unstable
uniform string. In this case, the horizon would not pinch
off at the GL point. Our result suggests, however, that the
horizon fragmentation during the classical decay can be
avoided only for d > d�. This is a rather curious develop-
ment since the original HM argument was dimension
independent. It should be noted, however, that the central
issue of whether any unstable string must decay to a
string remains unresolved even for d > d�.

The most general ansatz for static black-string solu-
tions is

ds2 � �e2Afdt2 � e2B�f�1dr2 � dz2� � e2Cr2d
2
d�3;

f � 1� 1=rd�4; (2)
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functions vanish the metric becomes that of a static uni-
form black string with the horizon located at r0 � 1.

Gubser [4] has considered static NUBS solutions that
differ only perturbatively from a uniform black string.
Since the method was described in detail in the original
paper [4] and then in [7], we mention only the most
important points. Gubser developed a perturbation theory
considering the expansion of the metric functions in
powers of �̂�. This �̂� parametrizes the NUBS branch that
joins the GL point in the limit �̂�! 0. The expansion has
the following form [Gubser used the ‘‘nonuniformity’’
parameter, � :� 1=2�Rmax=Rmin � 1�, where Rmax and
Rmin refer to the z-dependent Schwarzschild radius of
the horizon. It was shown subsequently in [16,19] that a
good order parameter that allows one to put black strings
and holes on the same phase diagram is not �, which is
undefined for the latter, but the scalar charge of the
dilatonic field. However, for our current purposes �̂� may
be left unspecified.]:

X �
X1
n�0

�̂�nXn�r� cos�nKz�; Xn�r� �
X1
p�0

�̂�2pXn;p�r�;

K �
X1
q�0

�̂�2qkq; (3)

for X � A;B;C with X0;0 � 0; and K � 2�=L.
Upon substituting (3) into the Einstein equations,

R�� � 0, a finite set of ordinary differential equations
(ODEs) is generated at each order of the expansion. (See
[17] for derivation of the Einstein equations in a similar
case.) Gubser’s method is very accurate up to the third
order in �̂�. Following the original procedure, we restrict
our computations up to O��̂�3�. Nevertheless, interesting
results are already obtained here. Actually, the third order
is precisely what one needs to determine the smoothness
of the transition.

As discussed in [4], the perturbation theory contains a
‘‘scheme’’ dependence that seems to correspond to differ-
ent parametrizations of the nonuniform branch.
Originally, fixing of the ‘‘scheme’’ was achieved by fixing
the constants cn;p :� Cn;p�r0�. Still, other ‘‘schemes’’ can
be used. For example, in [7] the asymptotic length of the
compact circle was held fixed, K � const, but the con-
stants cn;p were allowed to vary. In fact, different
‘‘schemes’’ all produce the same scheme-independent
results, such as, e.g., the dimensionless mass (1). Here
we choose to work in the ‘‘standard scheme,’’ as it is
referred in [4], by fixing cn;p � 0 for n > 1 and c1;0 � 1.

Once the metric functions are known, various thermo-
dynamical variables can be computed. Asymptotically,
the spacetime (2) is characterized by two charges
[16,19]—the mass and the tension of the black string.
By making a Kaluza-Klein reduction in the z direction,
Xn;p in (3) are observed to be massive modes for n > 0
and they are massless otherwise. Only the latter contrib-
ute to the asymptotic charges since the former decay
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exponentially. Up to O��̂�3�, the relevant massless modes
are X0;1. Asymptotically, they fall off as inverse powers of
r. We denote the coefficients of the leading terms by X1.
It is convenient to define the variation of the charges of a
nonuniform string with respect to a uniform one.
According to [16], at the leading order these variations
read (we use units in which GN :� Gd=L � 1)

!M=M ��2�A1 � B1=�d� 3���̂�2;

!T =T ��2�A1 � �d� 3�B1��̂�
2:

(4)

We also compute the variation in the temperature,
!T=T � exp�A� B� � 1, and in the entropy, !S=S �
exp�B� �d� 3�C� � 1, which are evaluated at r � 1.

Finally, defining the variation of K, !K=K :�
�k1=k0��̂�

2, we determine the dimensionless, scheme-
independent variables by multiplying the dimensional
quantities by suitable powers ofK. By doing so, we obtain
for our variables

!�=� � !M=M� �d� 4�!K=K :� %1�̂�
2 �    ;

!&=& � !T =T � �d� 4�!K=K :� &1�̂�
2 �    ;

!'=' � !T=T � !K=K :� '1�̂�
2 �    ;

!s=s � !S=S� �d� 3�!K=K :� s1�̂�
2 �    :

(5)

Incorporating the first law as in [4], we evaluate the
entropy difference between the nonuniform and uniform
strings with the same mass

Snonuniform
Suniform

� 1� (1�̂�
2 � (2�̂�

4 �    ;

(1 �%1 �
d� 4

d� 3
s1;

(2 � �
d� 3

2�d� 4�

�
'1 �

1

d� 4
%1

�
%1:

(6)

The vanishing of (1 is ensured by the first law at the
leading order (where L � const) [4]. We verified that to a
good (&1%) accuracy,(1 � 0 for our solutions. Thus, the
entropy difference (6) arises only at O��̂�4�.

At each order of �̂�, we solved the ODEs numerically
[22].We were able to exactly reproduce the numbers found
thus far in the literature: for 5d in [4] and for 6d in [7]. An
indication of the accuracy of the method is gained by
varying the ‘‘scheme’’ [4], by altering c0;1 � 0;�1. The
resulting variation in (5) and (6) gives an idea of the
numerical uncertainty. For small d, the accuracy of our
calculation is high, being about 0:5% in %1 and 1% in (2.
For larger d, the method is somewhat less accurate, yield-
ing 5% and 6% variations in %1 and (2, respectively, for
d � 16. This has to do with the steep asymptotic falloff of
A and B in which the leading terms decay as r��d�4�,
while C falls off only as 1=r [in 5d the falloff is log�r�=r].
Hence, the accuracy in extracting the coefficients A1; B1,
that contribute to %1 and (2, decreases for large d.

The critical mass.—The calculation in the linear order
in �̂� yields the mass of the critical string, since the leading
031601-2
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order of (3) corresponds to the static GL mode. We per-
formed the calculations in d � 5; . . . ; 16; 20; 30, and 50.
For d � 10, we confirm a very good agreement with the
original GL results [1], presented in their Fig. 1. Note,
however, that the methods are very different. For the
entire range of d, we find that the critical mass is remark-
ably well approximated by

�c / �
d; (7)

with � ’ 0:686, and the prefactor is approximately 0.47,
for our definition of mass (1). In Fig. 1, we plot the relative
difference between the logarithm of the critical mass and
the fit (7). It is clearly seen that log��c� is linear for all d.
There is still room for a weak d dependence, of order
2:1%, around the dominant scaling (7). We, however,
could not extract this residual dependence.

To get an insight into this behavior (7), we compute the
mass of a uniform black string whose entropy is equal to
that of a single BH with the same mass. First, we com-
pare the entropy of the black string with that of a
d-dimensional Schwarzschild BH. Equating, S�0�BH��� �
SBStr���, we solve for the mass:

��0� �
1

16�

d�3
d�3


d�4
d�2

�d� 3��d�3��d�3�

�d� 2��d�2��d�4�
; (8)

where 
d is the surface area of a unit Sd sphere.
Actually, we can do slightly better by using the ana-

lytical formula for the entropy of small BHs on cylinders
derived recently in [21]:

S�1�BH � S�0�BH

�
1�

)�d� 3�16��
2�d� 3�
d�2

�O��2�

�
; (9)

where )�x� is Riemann’s zeta function. This formula
reflects the leading order corrections to the
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FIG. 1 (color online). The relative difference between the
mass and the fit (7), 0:47�d, as a function of d. For �c this
difference is zero with the spread of about 0:8% magnitude,
giving approximately 2:1% variations in �c itself.

031601-3
Schwarzschild metric due to compactification. (The per-
turbation theory is constructed in powers of �� 1.) It
implies that for a given mass the entropy of a ‘‘caged
black hole’’ (a BH in a compactified spacetime) is larger
than the entropy of a Schwarzschild BH. The mass ��1�

corresponding to equality of the entropies is then ob-
tained by solving the equation S�1�BH��� � SBStr���.

We add to Fig. 1 the plots for these masses. In contrast
to log��c�, the logarithms of ��0� and ��1� have a non-
linear behavior for small d. They do, however, become
linear (with different slopes) for d� 10. Here we already
see a hint of a critical dimension—looking at the differ-
ence between�c and its estimator (either��0� or��1�) one
notices a change of sign at about d� 12:5. This suggest
that for d * 13 the BH state is entropically favorable over
the string state only for �<�c.

From a sudden to a smooth phase transition.—
Performing the computation in higher orders, up to
O��̂�3�, we obtain the variation in the variables (5) and
entropy (6). The results for %1 and (2 are depicted in
Fig. 2. One observes that %1 is initially positive for d � 5,
reaches a maximum at d � 10, and becomes negative for
d > 13. Then it continues to decrease and in fact it drops
increasingly faster with d, as indicated by the growing
distances between subsequent points in the graph. The
pattern for (2 is similar but with the opposite sign. (In
fact we also did the computation in d � 20 finding the
same trends. However, the numerical errors were of order
20% so we regard this case as indicative only.)

The key phenomena is the appearance of a critical
dimension, d� � 13, above which the perturbative non-
uniform strings are less massive than the marginal GL
string. Moreover, their entropy is larger than the entropy
of the uniform string with the same mass. It is important
that %1 and (2 change signs simultaneously.
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FIG. 2 (color online). The trends in the mass,
�nonuniform=�uniform :� 1� %1�̂�

2 �    , and the entropy,
Snonuniform=Suniform :� 1� (2�̂�

4 �    , shifts between uniform
and nonuniform black strings. The key result is the sign change
of %1 and (2 above d� � 13.
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As for the other variables, we find that the trend in the
entropy shift, s1, is qualitatively similar to the behavior
of %1—it is positive for d � d� and it becomes negative
above d�. For the variation of the temperature, we note
that below d� the NUBS is ‘‘cooler’’ than the uniform
one, and above d� it is ‘‘hotter.’’ We find that the tension of
the nonuniform strings is lower than that of uniform ones.
This is in tune with the expectation that the uniform black
string has a maximal tension, and that the tension van-
ishes for small black holes [16,23]. In addition, we ob-
serve the ratios %1=&1 and %1=s1 to be discontinuous near
d�. Note also that in Fig. 2 we plot the coefficients of the
mass and the entropy shifts. To obtain the physical vari-
ations, these and other coefficients must be multiplied by
suitable powers of �̂�.

In summary, while we have found the dependence of
the critical mass on the dimension, we do not have at
present an explanation for the scaling (7). We believe it
gives us some insight into the nature of the GL instability
and it probably is connected with the thermodynamical
instability of the system [14]. However, it is the appear-
ance of a critical dimension, d�, that can perhaps be
regarded as our main result. It implies that above d� the
critical string can smoothly evolve into the NUBS phase.
For d � d�, the transition is of first order.

The continuous transition above d� suggests that the
NUBS phase can be a natural end state of the GL insta-
bility. Indeed, a uniform string losing its mass by evapo-
ration and encountering the instability at �c can
smoothly evolve to the nonuniform state keeping its
singularity covered by the horizon. Already from Fig. 1
it could be inferred that above d * 13 there can be a
branch of solutions between the uniform strings and the
BHs. We believe that the NUBS state is a reasonable
candidate for this ‘‘missing link.’’

As the mass is further radiated away, two scenarios
may be proposed: (i) The NUBS branch extends to an
arbitrary small mass. A black string evolves along this
branch probably increasing its nonuniformity all the way
down to zero mass. In this case, the cosmic censorship
would be held (at least until the final stages of evapora-
tion). (ii) A NUBS becomes unstable at a finite mass
where the horizon fragments and a localized BH forms.
This may lead to a compromise of the cosmic censorship,
much like in the d � d� case but for a mass smaller than
�c. The transition between a NUBS and a BH can be
sudden or smooth depending on the relative values of the
instability masses for these states. Note that a NUBS
branch that extends to zero mass or becomes unstable
even earlier on a phase diagram is conceptually the
same. The main difference is whether the naked singu-
larity shows up before the end of evaporation or not.

To address these intriguing issues, it would be a very
interesting future task to construct in a fully nonlinear
regime, as in [7], the branch of NUBSs that we found
here. In particular, it is interesting to determine for how
low a mass this branch drops, would the horizon try to
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pinch off forming a conelike ‘‘waist’’ [6,9], and whether
the topology tends to change. In addition, we expect that
a time evolution of the critical string, as in [12], should
confirm a nice decay for d > d�.

In this work we have considered black strings in a
cylindrical spacetime. We believe that the critical dimen-
sion phenomena is general and will hold for more general
backgrounds with additional compact dimensions even if
the specific value d� � 13 would change.
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