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Atomic Quantum Gases in Kagomé Lattices
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We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé
lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized
Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless
interacting Fermi gas at 2=3 filling behaves as a quantum magnet on a triangular lattice. Finally, a
Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferro-
magnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a
continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and
observing such a quantum spin liquid employing molecular Bose condensates.
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FIG. 1. (a) Ideal Kagomé lattice for 	 � 
=2. (b) TKL using
	 � 
=4. This lattice can be generated using three SWs with a

=3 angle between themselves. Each SW is generated by three
lasers with a configuration shown in (c). (d) Enumeration of
atomic physics of ultracold quantum lattice gases, which spins in a trimer and of neighboring trimers.
During the past 30 years, condensed matter physics has
devoted considerable interest to the issue of frustrated
quantum antiferromagnets (QAF) (cf. [1]). In 1973,
Anderson proposed [2] the resonating-valence bond
(RVB) for the ground state of QAFs, where all spins are
paired into singlets. RVB states exhibit neither the stan-
dard antiferromagnetic Néel order nor the spin-Peierls
order (for which singlet pairs are ordered in space).
Recent extensive numerical studies have shown that the
RVB physics characterizes the spin 1=2 Heisenberg anti-
ferromagnet on the 2D Kagomé lattice in 2D [see Fig. 1(a)]
[3,4]. The spectrum of this system has a very peculiar
structure: The energy gap between the ground state and
the lowest triplet state, if any, is predicted to be very
small (of order J=20, where J is the spin exchange cou-
pling). This gap is filled with low-lying singlet states.
Their number scales as 1:15N with the number of lattice
sites N. For temperatures above the triplet gap, the spin
correlations decay rapidly in space, but have a very slow
temporal behavior hs�x; 0�s�x; t�i / 1=t0:6 [5].

Avery illuminating analytic insight into the physics of
QAF in the Kagomé lattice has been recently obtained by
Mila and Mambrini [6], who considered a trimerized
Kagomé lattice (TKL) [see Fig. 1(b)]. Such a lattice is a
triangular lattice of trimers with intra(inter)trimer cou-
plings J and J0 � J, respectively. In Refs. [6], a nontrivial
mean-field theory has been formulated that predicts cor-
rectly the number, the form, and the spectrum of singlet
excitations, which correspond to a restricted set of short-
range RVB states. For J0 � J, the theory predicts a triplet
gap �2=3�J0. All these theoretical findings do not yet have
a clear experimental confirmation in condensed matter
systems, and it is thus desirable to seek other possible
testing grounds.

Such novel testing grounds could be provided by the
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is one of the most rapidly developing fields of alternate
molecular orbital physics nowadays. Following the pro-
posal of Jaksch et al. [7], Greiner et al. [8] were the first to
demonstrate the superfluid-Mott insulator (MI) transition
in a lattice Bose gas, predicted earlier in Ref. [9]. Atomic
physics and quantum optics offer in this context a new
and very precise way of preparing, manipulating, and
detecting the system under investigation.

In this Letter we show that, using superlattices tech-
niques [10], it is possible to create a 2D optical trimerized
Kagomé lattice, and to control in real time the degree of
trimerization (i.e., the ratio of J0=J). The physics of cold
atomic gases in such an optical lattice is described quite
2004 The American Physical Society 030601-1
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generally by various versions of the Hubbard model, and
the energies and couplings defining such models can be
calculated using solid-state methods (tight binding ap-
proximation, Wannier function expansion [11]). Such an
unprecedented possibility motivates us to consider three
kinds of quantum gases in the TKL: (i) a Bose gas with
repulsive interactions; for this case we predict the appear-
ance of Mott-insulator phases with fractional fillings � �
1=3; 2=3; (ii) a spinless Fermi gas with nearest-neighbor
interactions; such gas appears, for instance, naturally as a
strong-interaction limit of the Bose-Fermi Hubbard
model [12]. In this case, fermions (or, more generally
composite fermions consisting of bare fermions coupled
to bosons or bosonic holes) attain boson mediated inter-
actions. Interestingly, at 2=3 filling the Fermi gas behaves
as a frustrated quantum magnet on a triangular lattice
with couplings dependent on the direction of the bonds.
(iii) Finally, we consider a Fermi-Fermi mixture at full
total filling N1 � N2 � N=2, where Ni is the number of
fermions of each species. Such a system in the strong
coupling limit is equivalent to the spin 1=2 Heisenberg
antiferromagnet in zero magnetic field, and the physics of
this system is well described by the RVB model. We
discuss in detail how to prepare a system in low-lying
singlet states, and how to detect its properties.

In the following, we consider the atoms in a 2D optical
lattice in the xy plane, being strongly confined (magneti-
cally or optically) in the z direction. In order to form a
Kagomé lattice, one can use blue detuned lasers, so that
the potential minima coincide with the laser intensity
maxima [13]. A perfect triangular lattice can be created
by two standing waves (SWs) on the xy plane, cos2� ~kk1;2 ~rr�,
with ~kk1;2 � kf1=2;


���
3

p
=2g, and an additional SW

cos2� ~kk3 ~rr	�, with ~kk3 � kf0; 1g. The resulting triangles
have a side of length 2
=

���
3

p
k. By varying 	, the third

SW is shifted along the y axis, and, in principle, a
Kagomé pattern could be realized.

However, three lasers on a plane cannot have a mutu-
ally orthogonal polarization, and, hence, undesired inter-
ferences between SWs occur. This can be avoided by
randomizing the relative orientation of the polarization
between SWs, or by introducing small frequency mis-
matches, which, however, have to be larger than any other
relevant frequencies. Moreover, due to diffraction, the
ratio � between the separation between maxima and
the half width at half maximum is 4, and, for any 	,
the potential minima forming the Kagomé triangles can-
not be resolved. This can be avoided by using superlatti-
ces. For example, one may substitute each SW (i � 1; 2; 3)
by a potential �cos� ~kki ~rr�  2 cos� ~kki ~rr=3��

2, for which � �
7:6, and a perfect Kagomé lattice for 	 � 
=2, and a
modestly TKL for 5
=12 � 	 � 
=2 is possible. For
another superlattice [Fig. 1(c)], �cos� ~kki ~rr�  2 cos� ~kki ~rr=3� 
4 cos� ~kki ~rr=9��2, with �� 14, one can reach a strongly TKL
[Fig. 1(b)].

The proposed scheme allows one to realize the trimer-
ized and the ideal Kagomé lattice, and transform one into
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the other and back by changing 	. One is thus tempted to
study the physics of ultracold gases in such lattices. In the
following, we consider three different physical systems: a
Bose gas, a single component Fermi gas with nearest-
neighbor interactions, and a two-component Fermi gas.
The physics of these systems is quite generally described
by a Hubbard model [7]. The parameters of the model
include intra(inter)trimer tunneling (hopping) J (J0),
on-site interaction energies V for different species, and
nearest-neighbor interactions U (U0). These parameters
can be controlled in a broad range by modifying the laser
detunings and intensities, as well as the configuration of
the superlattices (the phase 	).

To calculate the parameters J; J0; V; . . . , we determine
first the Bloch functions for the problem. Since there are
three lattice sites per Bravais lattice, the lowest band
splits actually into three different bands [11]. For each
of the bands we calculate the corresponding Wannier
functions (localized at each one of the Kagomé triangles),
and combine them to construct functions localized at
each lattice site. Once these functions are known, the
tunneling and interaction coefficients are calculated as
in Ref. [7].

We consider first the Bose gas, which is described by
the corresponding Bose-Hubbard Hamiltonian:

HBH � �
X

hiji

�Jijb
y
i bj  H:c:� 

X

hiji

Uijninj


X

i

�Vni�ni � 1�=2��ni�; (1)

where the tunneling and nearest-neighbor interaction co-
efficients Jij and Uij take here the values J and U for
intratrimer, and J0 and U0 for intertrimer hopping, � is
the chemical potential, ni � byi bi, and bi; b

y
i are the

annihilation and creation operators for bosons at the site
i. In the limit when the boson number NB � N, i.e., for
filling factors � � 1, and for strong on-site interactions
V � J; J0, only one particle may occupy a lattice site.

In the strongly trimerized case (J0; U0 � U < J), the
system will enter a trimerized Mott phase with the ground
state corresponding to the product over (independent)
trimers. Depending on the particular value of ��� � ���
U�=�2JU�, we may have 0 ( ���<�1), one (�1 � ���<
0), two (0 � ���< 1), or three (1 � ���) bosons per trimer,
i.e., filling factors � � 0, 1=3, 2=3, or one boson per site.
For fractional filling, the atoms within a trimer minimize
the energy forming a, so-called, W state [14]: jWi �
�j001i  j010i  j100i�=

���
3

p
for � � 1=3, and jWi �

�j110i  j101i  j011i�=
���
3

p
for � � 2=3. It is worth no-

ticing that W states themselves have interesting applica-
tions for quantum information theory (cf. [15]).

Generalizing the Landau mean-field theory of Ref. [9],
we obtain the phase diagram in the �JJ0 � J0=�2JU� and
��� plane with characteristic lobes describing the bounda-

ries of the Mott phases, given by �JJ0 � �j ���j � 1�=2
for j�j � 1, and �JJ0 � �3=2�j ���j�1� j ���j�=�4� j ���j� for
j�j< 1. Observations of this Mott transition require
030601-2
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temperatures T of the order of J0, i.e., smaller than J and
U. AssumingU of the order of few recoil energies [8], that
implies T in the range of tens of nK. The results for J < U
are qualitatively similar. Note that direct monitoring of
the number of particles per trimer is feasible; also, time-
of-flight experiments should reveal the coherence of the
W states.

The spinless Fermi gas in the trimerized Kagomé
lattice is described by the Fermi-Hubbard Hamiltonian:

HFH � �
X

hiji

�Jijf
y
i fj  H:c:� 

X

hiji

Uijninj �
X

i

�ni;

(2)

where as before Jij and Uij take the values J and U for
intratrimer, and J0 and U0 for intertrimer hopping, � is
the chemical potential, ni � fyi fi, and fi; f

y
i are the

fermionic annihilation and creation operators. In the fol-
lowing, we enumerate the sites in each trimer 1, 2, and
three clockwise starting from the upper left site. We
denote the three different intratrimer modes by f �
�f1  f2  f3�=

���
3

p
(zero momentum mode), and f
 �

�f1  z
f2  z2
f3�=
���
3

p
(left and right chirality modes),

where z
 � exp�
2
i=3�. The intratrimer Hamiltonian
acquires the form Hintra � �3JfyfU�� �nn� ~���2 �
~��2�=2, where �nn is the total fermion number in the trimer,
whereas ~�� � ��� JU=2�=U. In the strongly trimer-
ized limit, we have (depending on the value of ~��): 0 ( ~��<
1=2� 3J=U), one (1=2� 3J=U < ~��< 3=2), two (3=2<
~��< 5=2), or three ( ~�� > 5=2) fermions per trimer.
Obviously, the cases with zero and three fermions per
trimer are not interesting. For one fermion per trimer or
less (filling factor 0 � � � 1=3), at low temperatures
(T < J) the fermions will preferably occupy the lowest
energy zero momentum mode f forming a gas of f
fermions on a triangular lattice, with a tunneling rate
J0=3, and a coupling constant for nearest-neighbor inter-
actions U0=9. Depending on the sign of U0, we expect a
similar behavior as in Ref. [12], i.e., the appearance of a
superfluid phase or fermionic domains for U0 < 0, and
Fermi liquid, or density wave phases for U0 > 0.

The situation is more complex in the case of two
fermions per trimer, since the second fermion may then
have left or right chirality, while the first fermion occu-
pies the f state with certainty. The system becomes
equivalent to a quantum magnet with interactions that
depend on the bond directions:

Hint �
2U0

9

X

i

X6

j�1

si�	i!j�sj� ~		j!i�; (3)

where nearest neighbors are enumerated as shown in
Fig. 1(d). In Eq. (3), we have s�	� � cos�	�sx 
sin�	�sy, where sx � �fyf�  fy�f�=2 and sy �
�i�fyf� � fy�f�=2. The angles 	 are 	i!1 � 	i!6 �
0, 	i!2 � 	i!3 � 2
=3, 	i!4 � 	i!5 � �2
=3,
~		1!i � ~		2!i � �2
=3, ~		3!i � ~		4!i � 0, and ~		5!i �
~		6!i � 2
=3.
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The couplings between the left and right modes are
effectively ferromagnetic for U0 > 0, and antiferromag-
netic otherwise. Intertrimer hopping J0 contributes first in
order �J0�2=U, and is neglected here. For U0 < 0, the
classical approximation yields a Néel-type ground state
with planar order in which on every triangle there is
exactly one spin along the � � 0; 2
=3;�2
=3 direc-
tions. The excitation spectrum is expected to be gapped.
For U0 > 0, one finds two types of ground states which are
degenerate in the classical limit: a planar state of the type
just described, but with opposite chirality, and a ferro-
magnetic state in which the spins align in the xy plane. A
linear spin-wave analysis yields a lower energy for the
ferromagnetic state. In this approximation the continuous
degeneracy of the classical ferromagnet is lifted leaving
six degenerate ground states in which the spins align
parallel or antiparallel to the three lattice directions. A
numerical study of the original spin-1=2 model, Eq. (3),
aiming at a check of these semiclassical results is in
progress.

The observation of the quantum phases in this model
requires U0 < J;U, and T < U0. If the fermionic interac-
tions are due to dipolar forces [16], then U may be of the
order of a few recoils, and T in the range of 10–100 nK. If
fermionic interactions are due to hopping induced effects
in a Bose-Fermi mixture, then T in the range of 10 nK
will be necessary (for details, see [12]).

Finally, we consider a Fermi-Fermi mixture with half-
filling for each species, i.e., a spin 1=2 Hubbard model:

HFF � �
X

hiji

Jij�f
y
i fj  ~ffyi ~ffj  H:c:� 

X

i

Vni~nni; (4)

where the operators fi and fyi (~ffi and ~ffyi ) are the creation
and annihilation operators for the two components,
ni � fyi fi (~nni � ~ffyi ~ffi), and, as above, Jij � J0 (J00) for
intra(inter)trimer hopping. In the strong coupling limit,
J0; J00 � V (t-J model) [1], HFF reduces to the Heisenberg
antiferromagnet,

H � J
X

hi;jiintra

~ssi � ~ssj  �JJ0
X

hi;jiinter

~ssi � ~ssj; (5)

where J � 4J20=V, J0 � 4J020 =V, and ~ss � �sx; sy; sz�, with
n� ~nn � 2sz, fy ~ff � sx  isy, and ~ffyf � sx � isy.

In the strongly trimerized limit [6], the total spin in the
trimer takes the minimal value, i.e., 1=2, and there are
four degenerate states having sz � 
1=2 and left or right
chirality. The spectrum of the system in the singlet sector
consists of a narrow band of low energy states of the
width of order J0, separated from the higher singlet (trip-
let) bands by a gap of order 3J=4 (2J0=3).

Assuming that we can prepare the system in a singlet
state at J0 < T < J, then the density of states of the low
lying singlet levels can be obtained by repeated measure-
ments of the system energy. The latter can be achieved by
simply releasing the lattice so that, after taking care of
the zero point energy, all of the interaction energy trans-
forms into kinetic energy. Similarly, we can measure the
030601-3
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mean value and the distribution of any nearest-neighbor
two-spin correlations. To this aim, one has to apply at the
moment of the trap release a chosen nearest-neighbor
two-spin Hamiltonian and keep it acting during the cloud
expansion (for details, see [17]). In a similar manner, we
can measure the spectrum of triplet excitation, by excit-
ing a triplet state, which can be done by flipping one spin
using a combination of superlattice methods and laser
excitation [18]. The measurement of the singlet-triplet
gap requires a resolution better than J0.

A similar type of measurement can be performed in
ideal Kagomé lattices, when J � J0, for which the singlet-
triplet gap is filled with singlet excitations [3]. By varying
	, one can transform adiabatically from strongly TKL to
ideal Kagomé, for which the final J will be smaller than
the initial J, but larger than the initial J0. In that case, the
system should remain within the lowest set of 1:15N

states that originally formed the lowest singlet band. The
singlet-triplet gap, if any, is estimated to be �J=20, and
should be measurable using the methods described above.

A possible way to prepare a singlet state in the TKL
with T < 3J=4 could employ the recently obtained Bose-
Einstein condensates of molecules consisting of two fer-
mionic atoms [19] at temperatures of the order of 10 nK.
Such Bose-Einstein condensates (BECs) should be loaded
onto an ideal and weak Kagomé lattice. Note that the
molecules formed after sweeping across a Feshbach reso-
nance are in a singlet state of the pseudospin ~ss. This can
easily be seen, because the two fermions enter the reso-
nance from the s-wave scattering channel (i.e., in the
symmetric state with respect to the spatial coordinates),
and, thus, are in a singlet state of the pseudospin (i.e.,
antisymmetric state with respect to exchange of elec-
tronic and nuclear spins). Since the interaction leading
to the spin flipping at the Feshbach resonance [20] is
symmetric under the simultaneous interchange of both
nuclear and electronic spin, then the formed molecule
remains in a pseudospin singlet. The typical size of the
molecule is of the order of the s-wave scattering length a,
and thus can be modified at the resonance [21], being
chosen comparable to the lattice wavelength. Growing
the lattice breaks the molecule into two separate fermi-
onic atoms in neighboring sites in the singlet pseudospin
state. In this way, a singlet covering of the Kagomé lattice
may be achieved, allowing for the direct generation of a
RVB state [2].

In summary, we have shown that by employing cur-
rently available superlattice techniques it is possible to
create in a controlled way a trimerized Kagomé lattice.
An ultracold Bose gas in such a lattice exhibits novel
Mott insulator phases with fractional filling � �
1=3; 2=3. A single-component Fermi gas with nearest-
neighbor interactions for � � 1=3 behaves as a Fermi
gas in the underlying triangular lattice, whereas for � �
2=3 it becomes a nonstandard ferromagnet or antiferro-
magnet in the triangular lattice with direction dependent
bonds. Finally, for a Fermi-Fermi mixture in a Kagomé
030601-4
lattice, which is described by an antiferromagnetic
Heisenberg model, we have shown the possibility to mea-
sure the spectral properties of the latter system. This
opens the way for analyzing in a novel and fascinating
setting one of the paradigmatic problems of condensed-
matter physics, the physics of random valence bond frus-
trated QAF’s.
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